Π§ΠΈΡ‚Π°ΠΉΡ‚Π΅ ΠΊΠ½ΠΈΠ³ΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ Π½Π° Bookidrom.ru! БСсплатныС ΠΊΠ½ΠΈΠ³ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΊΠ»ΠΈΠΊΠ΅

Π§ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΠ½Π»Π°ΠΉΠ½ Β«ΠŸΡ€ΠΎΡΡ‚Π°Ρ ΠΎΠ΄Π΅Ρ€ΠΆΠΈΠΌΠΎΡΡ‚ΡŒ. Π‘Π΅Ρ€Π½Ρ…Π°Ρ€Π΄ Π ΠΈΠΌΠ°Π½ ΠΈ Π²Π΅Π»ΠΈΡ‡Π°ΠΉΡˆΠ°Ρ Π½Π΅Ρ€Π΅ΡˆΠ΅Π½Π½Π°Ρ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅.Β». Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†Π° 53

Автор Π”Π΅Ρ€Π±ΠΈΡˆΠΈΡ€ Π”ΠΆΠΎΠ½

IV.

Π‘ΠΎΡ€ΠΎΠΊ Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄ блСстящий, Π½ΠΎ эксцСнтричный Π’Π΅ΠΎΠ΄ΠΎΡ€ ЭстСрман [112] написал ΡƒΡ‡Π΅Π±Π½ΠΈΠΊ, ΠΎΠ·Π°Π³Π»Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ Β«ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½Ρ‹Π΅ числа ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ», Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π»ΠΈΡΡŒ всСго Π΄Π²Π° рисунка. Β«Π― <… > ΠΈΠ·Π±Π΅ΠΆΠ°Π» всякого обращСния ΠΊ гСомСтричСской ΠΈΠ½Ρ‚ΡƒΠΈΡ†ΠΈΠΈΒ»,Β β€” объявлял Π°Π²Ρ‚ΠΎΡ€ Π² прСдисловии. Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ число родствСнных Π΅ΠΌΡƒ Π΄ΡƒΡˆ, ΠΎΠ΄Π½Π°ΠΊΠΎ большая Ρ‡Π°ΡΡ‚ΡŒ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠ² Π½Π΅ слСдуСт ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρƒ ЭстСрмана. Они Ρ‚Ρ€Π°ΠΊΡ‚ΡƒΡŽΡ‚ Ρ‚Π΅ΠΎΡ€ΠΈΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ комплСксной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² Π²Ρ‹ΡΡˆΠ΅ΠΉ стСпСни Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎ. МногиС ΠΈΠ· нас ΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ комплСксной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π»Π΅Π³Ρ‡Π΅ ΠΎΡΠ²ΠΎΠΈΡ‚ΡŒ, ΠΏΠΎΠ»ΡŒΠ·ΡƒΡΡΡŒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ наглядными ΠΎΠ±Ρ€Π°Π·Π°ΠΌΠΈ.

Но ΠΊΠ°ΠΊ ΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ наглядно ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ сСбС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ комплСксной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ? Π’ΠΎΠ·ΡŒΠΌΠ΅ΠΌ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΡƒΡŽ Π½Π΅Ρ‚Ρ€ΠΈΠ²ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ комплСксной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ β€” Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ возвСдСния Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚. Π•ΡΡ‚ΡŒ Π»ΠΈ ΠΊΠ°ΠΊΠΎΠΉ-Π½ΠΈΠ±ΡƒΠ΄ΡŒ способ ΡƒΠ·Π½Π°Ρ‚ΡŒ, Π½Π° Ρ‡Ρ‚ΠΎ ΠΎΠ½Π° ΠΏΠΎΡ…ΠΎΠΆΠ°?

Π‘ΠΊΠ°ΠΆΠ΅ΠΌ сразу: ΠΎΡ‚ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ‚ΠΎΠ»ΠΊΡƒ здСсь Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ. Π’ ΠΌΠΈΡ€Π΅ вСщСствСнных чисСл ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ ΠΏΡ€ΡΠΌΡƒΡŽ, ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ°ΡŽΡ‰ΡƒΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρ‹ (ΠΊΠ°ΠΊ ΠΌΡ‹ ΠΏΠΎΠΌΠ½ΠΈΠΌ, вСщСствСнныС числа ΠΆΠΈΠ²ΡƒΡ‚ Π½Π° прямой); Π·Π°Ρ‚Π΅ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ Π΄Ρ€ΡƒΠ³ΡƒΡŽ ΠΏΡ€ΡΠΌΡƒΡŽ ΠΏΠΎΠ΄ прямым ΡƒΠ³Π»ΠΎΠΌ ΠΊ ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Π΅Π΅ для Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π§Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚, Ρ‡Ρ‚ΠΎ данная функция ΠΏΡ€Π΅Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ число x Π² число y, двигаСмся Π½Π° восток ΠΎΡ‚ Π½ΡƒΠ»Π΅Π²ΠΎΠ³ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Π½Π° расстояниС x (Π½Π° Π·Π°ΠΏΠ°Π΄, Ссли x ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ), Π° Π·Π°Ρ‚Π΅ΠΌ Π½Π° сСвСр ΠΎΡ‚ Π½ΡƒΠ»Π΅Π²ΠΎΠ³ΠΎ значСния Π½Π° расстояниС y (Π½Π° юг, Ссли y ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ). ΠžΡ‚ΠΌΠ΅Ρ‡Π°Π΅ΠΌ Ρ‚Π°ΠΌ Ρ‚ΠΎΡ‡ΠΊΡƒ. ΠŸΠΎΠ²Ρ‚ΠΎΡ€ΡΠ΅ΠΌ Ρ‚Π°ΠΊΠΎΠ΅ для ΡΡ‚ΠΎΠ»ΡŒΠΊΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, сколько Π½Π°ΠΌ Π½Π΅ лСнь Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ. Π­Ρ‚ΠΎ ΠΈ Π΄Π°Π΅Ρ‚ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. На рисункС 13.1 ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ ΠΏΡ€ΠΈΠΌΠ΅Ρ€.

ΠŸΡ€ΠΎΡΡ‚Π°Ρ ΠΎΠ΄Π΅Ρ€ΠΆΠΈΠΌΠΎΡΡ‚ΡŒ. Π‘Π΅Ρ€Π½Ρ…Π°Ρ€Π΄ Π ΠΈΠΌΠ°Π½ ΠΈ Π²Π΅Π»ΠΈΡ‡Π°ΠΉΡˆΠ°Ρ Π½Π΅Ρ€Π΅ΡˆΠ΅Π½Π½Π°Ρ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. - i_094.png

Рисунок 13.1. Ѐункция x2.

Однако это Π½Π΅ годится для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ комплСксной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ. АргумСнтам трСбуСтся двумСрная ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π° Π½Π΅ΠΉ Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒΡΡ, Π° значСниям Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½ΡƒΠΆΠ½Π° Π΅Ρ‰Π΅ ΠΎΠ΄Π½Π° двумСрная ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ. Π’Π°ΠΊ Ρ‡Ρ‚ΠΎ для Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ΡΡ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ пространствСнных измСрСния: Π΄Π²Π° для Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈ Π΄Π²Π° для Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. (Π’ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС, Ρ…ΠΎΡ‚ΠΈΡ‚Π΅ Π²Π΅Ρ€ΡŒΡ‚Π΅, Ρ…ΠΎΡ‚ΠΈΡ‚Π΅ Π½Π΅Ρ‚, Π΄Π²Π΅ Π΄Π²ΡƒΠΌΠ΅Ρ€Π½Ρ‹Π΅ плоскости ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°Ρ‚ΡŒΡΡ Π² СдинствСнной Ρ‚ΠΎΡ‡ΠΊΠ΅. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ с Ρ‚Π΅ΠΌ Ρ„Π°ΠΊΡ‚ΠΎΠΌ β€” ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎ нСдоступным для понимания ΠΎΠ±ΠΈΡ‚Π°Ρ‚Π΅Π»Π΅ΠΉ Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠΉ всСлСнной,Β β€” Ρ‡Ρ‚ΠΎ Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€ΠΈΠΈ Π΄Π²Π΅ Π½Π΅ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС Π½Π΅ обязаны ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°Ρ‚ΡŒΡΡ.)

Π­Ρ‚ΠΎ Ρ€Π°Π·ΠΎΡ‡Π°Ρ€ΠΎΠ²Ρ‹Π²Π°Π΅Ρ‚; Π½ΠΎ Π² качСствС компСнсации имССтся ΠΊΠΎΠ΅-Ρ‡Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π΄Π΅Π»Π°Ρ‚ΡŒ для создания ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΎΠΊ, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ комплСксной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ. Вспомним Ρ‚ΠΎ Π³Π»Π°Π²Π½ΠΎΠ΅, Ρ‡Ρ‚ΠΎ Π½Π°Π΄ΠΎ Π·Π½Π°Ρ‚ΡŒ ΠΏΡ€ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ: ΠΎΠ½Π° ΠΏΡ€Π΅Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ ΠΎΠ΄Π½ΠΎ число (Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚) Π² Π΄Ρ€ΡƒΠ³ΠΎΠ΅ (Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅). Π’Π°ΠΊ Π²ΠΎΡ‚, число-Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ прСдставляСт собой Ρ‚ΠΎΡ‡ΠΊΡƒ Π³Π΄Π΅-Ρ‚ΠΎ Π½Π° комплСксной плоскости, Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ прСдставляСт собой Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ Π΄Ρ€ΡƒΠ³ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, функция комплСксной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ отправляСт всС Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈΠ· своСй области опрСдСлСния Π² Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. МоТно Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ ΠΊΠ°ΠΊΠΈΠ΅-Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ ΠΏΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ, ΠΊΡƒΠ΄Π° ΠΎΠ½ΠΈ ΠΎΡ‚ΠΏΡ€Π°Π²Π»ΡΡŽΡ‚ΡΡ.

На рисункС 13.2, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ числа, ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ стороны Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° Π½Π° комплСксной плоскости. Π£Π³Π»Ρ‹ ΠΎΡ‚ΠΌΠ΅Π½Ρ‹ Π±ΡƒΠΊΠ²Π°ΠΌΠΈ a, b, c ΠΈ d. Π­Ρ‚ΠΎ Π² Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ комплСксныС числа βˆ’0,2Β +Β 1,2i, 0,8Β +Β 1,2i, 0,8Β +Β 2,2i ΠΈ βˆ’0,2Β +Β 2,2i.

ΠŸΡ€ΠΎΡΡ‚Π°Ρ ΠΎΠ΄Π΅Ρ€ΠΆΠΈΠΌΠΎΡΡ‚ΡŒ. Π‘Π΅Ρ€Π½Ρ…Π°Ρ€Π΄ Π ΠΈΠΌΠ°Π½ ΠΈ Π²Π΅Π»ΠΈΡ‡Π°ΠΉΡˆΠ°Ρ Π½Π΅Ρ€Π΅ΡˆΠ΅Π½Π½Π°Ρ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. - i_095.png

Рисунок 13.2. Ѐункция z2, примСнСнная ΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρƒ.

Π§Ρ‚ΠΎ с Π½ΠΈΠΌΠΈ ΠΏΡ€ΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ‚ ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ возвСдСния Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚? Если ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ число βˆ’0,2Β +Β 1,2i само Π½Π° сСбя, Ρ‚ΠΎ получится βˆ’1,4Β βˆ’Β 0,48i; Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‚Π°ΠΊΠΎΠ²ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ для Ρ‚ΠΎΡ‡ΠΊΠΈ a. Π’ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ чисСл, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ b, c ΠΈ d, Π΄Π°Π΅Ρ‚ значСния для всСх ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ²; эти значСния ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ ΠΊΠ°ΠΊ A, B, C ΠΈ D. Если ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΈΡ‚ΡŒ это для всСх Ρ‚ΠΎΡ‡Π΅ΠΊ вдоль сторон ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ для Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… сСтку Π²Π½ΡƒΡ‚Ρ€ΠΈ Π½Π΅Π³ΠΎ, получится искаТСнный ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΉ Π½Π° рисункС 13.2.

V.

ΠŸΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅ с функциями комплСксной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ Π΄ΡƒΠΌΠ°Ρ‚ΡŒ ΠΎ комплСксной плоскости ΠΊΠ°ΠΊ ΠΎ бСсконСчно растяТимом Ρ€Π΅Π·ΠΈΠ½ΠΎΠ²ΠΎΠΌ листС, ΠΏΡ€ΠΈ этом ΡΠΏΡ€Π°ΡˆΠΈΠ²Π°Ρ сСбя, Ρ‡Ρ‚ΠΎ ΠΆΠ΅ функция Π΄Π΅Π»Π°Π΅Ρ‚ с этим листом. По числам, Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹ΠΌ Π½Π° рисункС 13.2, ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΈΠ΄Π΅Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ функция возвСдСния Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ растягиваСт лист, закручивая Π΅Π³ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ² часовой стрСлки Π²ΠΎΠΊΡ€ΡƒΠ³ Π½ΡƒΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ вытягивая Π½Π°Ρ€ΡƒΠΆΡƒ. Число 2i, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ само ΠΏΠΎ сСбС ΠΆΠΈΠ²Π΅Ρ‚ Π½Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ (сСвСрной) части ΠΌΠ½ΠΈΠΌΠΎΠΉ оси, ΠΏΡ€ΠΈ Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ отправляСтся Π² число βˆ’4, располоТСнноС Π½Π° ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ (Π·Π°ΠΏΠ°Π΄Π½ΠΎΠΉ) части вСщСствСнной оси, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Π²Π΄Π²ΠΎΠ΅ дальшС ΠΎΡ‚ Π½ΡƒΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π’ свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ βˆ’4 ΠΏΡ€ΠΈ Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ растягиваСтся Π΄ΠΎ 16 (Π΅Ρ‰Π΅ дальшС ΠΎΡ‚ нуля) ΠΈ ΠΏΠΎΠΏΠ°Π΄Π°Π΅Ρ‚ Π½Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ (Π²ΠΎΡΡ‚ΠΎΡ‡Π½ΡƒΡŽ) Ρ‡Π°ΡΡ‚ΡŒ вСщСствСнной оси. По ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ Π·Π½Π°ΠΊΠΎΠ² число βˆ’2i, находящССся Π½Π° ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ (юТной) части ΠΌΠ½ΠΈΠΌΠΎΠΉ оси, «докручиваСтся» Π΄ΠΎ числа βˆ’4. На самом Π΄Π΅Π»Π΅, согласно ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ Π·Π½Π°ΠΊΠΎΠ², всякоС [113] Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ возвСдСния Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ встрСчаСтся Π΄Π²Π°ΠΆΠ΄Ρ‹, возникая ΠΏΡ€ΠΈ Π΄Π²ΡƒΡ… Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°Ρ…: Π½Π΅ Π±ΡƒΠ΄Π΅ΠΌ Π·Π°Π±Ρ‹Π²Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ βˆ’4 Π΅ΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ числа 2i, Π½ΠΎ ΠΈ числа βˆ’2i.

Π‘Π΅Ρ€Π½Ρ…Π°Ρ€Π΄ Π ΠΈΠΌΠ°Π½, обладавший, судя ΠΏΠΎ всСму, Ρ‡Ρ€Π΅Π·Π²Ρ‹Ρ‡Π°ΠΉΠ½ΠΎ Ρ€Π°Π·Π²ΠΈΡ‚Ρ‹ΠΌ Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π²ΠΎΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ, прСдставлял сСбС это Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ. Π’ΠΎΠ·ΡŒΠΌΠ΅ΠΌ всю ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ Ρ€Π°Π·Ρ€Π΅Π· вдоль ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ (Π·Π°ΠΏΠ°Π΄Π½ΠΎΠΉ) части вСщСствСнной оси, ΠΎΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΡΡŒ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Π½ΡƒΠ»ΡŒ. Π’Π΅ΠΏΠ΅Ρ€ΡŒ ухватимся Π·Π° Π²Π΅Ρ€Ρ…Π½ΠΈΠΉ ΠΊΡ€Π°ΠΉ этого Ρ€Π°Π·Ρ€Π΅Π·Π° ΠΈ потянСм Π΅Π³ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ² часовой стрСлки, поворачивая Π²ΠΎΠΊΡ€ΡƒΠ³ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½ΡƒΠ»ΡŒ, ΠΊΠ°ΠΊ Π±ΡƒΠ΄Ρ‚ΠΎ Ρ‚ΡƒΠ΄Π° встроСн ΡˆΠ°Ρ€Π½ΠΈΡ€. ΠŸΠΎΠ²Π΅Ρ€Π½Π΅ΠΌ этот ΠΊΡ€Π°ΠΉ Π½Π° 360 градусов. Π’Π΅ΠΏΠ΅Ρ€ΡŒ наш ΠΊΡ€Π°ΠΉ Ρ€Π°Π·Ρ€Π΅Π·Π° находится Π½Π°Π΄ растянутым листом, Π° Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΊΡ€Π°ΠΉ располоТСн прямо ΠΏΠΎΠ΄ Π½ΠΈΠΌ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ наш ΠΊΡ€Π°ΠΉ Ρ‡Π΅Ρ€Π΅Π· лист (для этого слСдуСт ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ сСбС, Ρ‡Ρ‚ΠΎ комплСксная ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ бСсконСчно растяТима, Π½ΠΎ ΠΈ сдСлана ΠΈΠ· Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° Ρ‚ΡƒΠΌΠ°Π½Π½ΠΎΠΉ субстанции, которая ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ сама сквозь сСбя) ΠΈ склСим ΠΎΠ±Π° края исходного Ρ€Π°Π·Ρ€Π΅Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° Ρƒ нас Π² Π³ΠΎΠ»ΠΎΠ²Π΅ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ выглядит ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Ρ‚Π°ΠΊ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° рисункС 13.3. Π’ΠΎΡ‚ Ρ‡Ρ‚ΠΎ функция возвСдСния Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π΄Π΅Π»Π°Π΅Ρ‚ с комплСксной ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ.

ΠŸΡ€ΠΎΡΡ‚Π°Ρ ΠΎΠ΄Π΅Ρ€ΠΆΠΈΠΌΠΎΡΡ‚ΡŒ. Π‘Π΅Ρ€Π½Ρ…Π°Ρ€Π΄ Π ΠΈΠΌΠ°Π½ ΠΈ Π²Π΅Π»ΠΈΡ‡Π°ΠΉΡˆΠ°Ρ Π½Π΅Ρ€Π΅ΡˆΠ΅Π½Π½Π°Ρ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. - i_096.png

Рисунок 13.3. Π ΠΈΠΌΠ°Π½ΠΎΠ²Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ, ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‰Π°Ρ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ z2.

Π­Ρ‚ΠΎ вовсС Π½Π΅ досуТиС изыски. На основС Ρ‚Π°ΠΊΠΎΠ³ΠΎ мыслСнного упраТнСния Π ΠΈΠΌΠ°Π½ Ρ€Π°Π·Π²ΠΈΠ» Ρ†Π΅Π»ΡƒΡŽ Ρ‚Π΅ΠΎΡ€ΠΈΡŽ, впослСдствии Π½Π°Π·Π²Π°Π½Π½ΡƒΡŽ Ρ‚Π΅ΠΎΡ€ΠΈΠ΅ΠΉ Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²Ρ‹Ρ… повСрхностСй. Она содСрТит ряд ΠΌΠΎΡ‰Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΈ Π΄Π°Π΅Ρ‚ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ Π²Π΅Π΄ΡƒΡ‚ сСбя Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ комплСксной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ. Она Ρ‚Π°ΠΊΠΆΠ΅ соСдиняСт Ρ‚Π΅ΠΎΡ€ΠΈΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ с Π°Π»Π³Π΅Π±Ρ€ΠΎΠΉ ΠΈ Ρ‚ΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ β€” двумя ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹ΠΌΠΈ областями ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ XX столСтия. А Π³Π»Π°Π²Π½ΠΎΠ΅ β€” ΠΎΠ½Π° прСдставляСт собой Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ Π΄Π΅Ρ€Π·ΠΊΠΎΠ³ΠΎ, Π±Π΅ΡΡΡ‚Ρ€Π°ΡˆΠ½ΠΎΠ³ΠΎ ΠΈ самобытного вообраТСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΎΠ±Π»Π°Π΄Π°Π» Π ΠΈΠΌΠ°Π½,Β β€” ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· Π²Π΅Π»ΠΈΡ‡Π°ΠΉΡˆΠΈΡ… ΡƒΠΌΠΎΠ², Π²ΠΎΠΎΠ±Ρ‰Π΅ ΠΊΠΎΠ³Π΄Π°-Π»ΠΈΠ±ΠΎ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Π²ΡˆΠΈΡ….

VI.

Π― Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡΡŒ Π³ΠΎΡ€Π°Π·Π΄ΠΎ Π±ΠΎΠ»Π΅Π΅ простым ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠΌ для ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ комплСксной ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ. ΠŸΠΎΠ·Π²ΠΎΠ»ΡŒΡ‚Π΅ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΌΠΎΠ΅Π³ΠΎ Π΄Ρ€ΡƒΠ³Π°, ΠΌΡƒΡ€Π°Π²ΡŒΡ ΠΏΠΎ ΠΈΠΌΠ΅Π½ΠΈ Арг; ΠΎΠ½ ΠΏΠ΅Ρ€Π΅Π΄ Π²Π°ΠΌΠΈ Π½Π° рисункС 13.4.

ΠŸΡ€ΠΎΡΡ‚Π°Ρ ΠΎΠ΄Π΅Ρ€ΠΆΠΈΠΌΠΎΡΡ‚ΡŒ. Π‘Π΅Ρ€Π½Ρ…Π°Ρ€Π΄ Π ΠΈΠΌΠ°Π½ ΠΈ Π²Π΅Π»ΠΈΡ‡Π°ΠΉΡˆΠ°Ρ Π½Π΅Ρ€Π΅ΡˆΠ΅Π½Π½Π°Ρ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. - i_097.png

Рисунок 13.4. ΠœΡƒΡ€Π°Π²Π΅ΠΉ Арг.

ΠœΡƒΡ€Π°Π²ΡŒΡ Арга нСвСроятно Ρ‚Ρ€ΡƒΠ΄Π½ΠΎ Ρ€Π°Π·Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ ΠΎΠ½ ΠΈΠΌΠ΅Π΅Ρ‚ бСсконСчно ΠΌΠ°Π»Ρ‹ΠΉ Ρ€Π°Π·ΠΌΠ΅Ρ€. Но Ссли Π±Ρ‹ ΠΌΡ‹ ΠΌΠΎΠ³Π»ΠΈ Π΅Π³ΠΎ Π²ΠΈΠ΄Π΅Ρ‚ΡŒ, Ρ‚ΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ»ΠΈ Π±Ρ‹, Ρ‡Ρ‚ΠΎ ΠΎΠ½ выглядит совсСм ΠΊΠ°ΠΊ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹ΠΉ ΠΌΡƒΡ€Π°Π²Π΅ΠΉ β€” Ссли ΡƒΠΆ Π±Ρ‹Ρ‚ΡŒ Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌ, Ρ‚ΠΎ ΠΊΠ°ΠΊ Ρ€Π°Π±ΠΎΡ‡ΠΈΠΉ Camponotus japonicus β€” с ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ числом Π»Π°ΠΏΠΎΠΊ, усиков ΠΈ ΠΏΡ€ΠΎΡ‡Π΅Π³ΠΎ. Π’ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· своих ΠΏΠ΅Ρ€Π΅Π΄Π½ΠΈΡ… Π»Π°ΠΏΠΎΠΊ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΠΎΠΆΠ½ΠΎ для удобства Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒ Β«Ρ€ΡƒΠΊΠΎΠΉΒ», ΠΌΡƒΡ€Π°Π²Π΅ΠΉ Арг Π΄Π΅Ρ€ΠΆΠΈΡ‚ ΠΏΡ€ΠΈΠ±ΠΎΡ€Ρ‡ΠΈΠΊ Π²Ρ€ΠΎΠ΄Π΅ ΠΏΠ΅ΠΉΠ΄ΠΆΠ΅Ρ€Π°, ΠΈΠ»ΠΈ мобильного Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½Π°, ΠΈΠ»ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· Ρ‚Π΅Ρ… устройств для глобального позиционирования, Ρ‡Ρ‚ΠΎ всСгда ΡΠΎΠΎΠ±Ρ‰Π°ΡŽΡ‚ Π²Π°ΠΌ, Π³Π΄Π΅ ΠΈΠΌΠ΅Π½Π½ΠΎ Π²Ρ‹ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚Π΅ΡΡŒ. На этом ΠΏΡ€ΠΈΠ±ΠΎΡ€Ρ‡ΠΈΠΊΠ΅ (рис.Β 13.5) ΠΈΠΌΠ΅ΡŽΡ‚ΡΡ Ρ‚Ρ€ΠΈ окошка. Π’ ΠΏΠ΅Ρ€Π²ΠΎΠΌ окошкС, ΠΏΠΎΠ΄ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ написано «функция», ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: z2, lnΒ z ΠΈ Ρ‚.Π΄.Β β€” Π² ΠΎΠ±Ρ‰Π΅ΠΌ, Π½Π° ΠΏΡ€ΠΈΠ±ΠΎΡ€Ρ‡ΠΈΠΊΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π»ΡŽΠ±ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ. Π’ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ окошкС, ΠΏΠΎΠ΄ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ написано Β«Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Β», ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Ρ‚ΠΎΡ‡ΠΊΠ° β€” Ρ‚.Π΅. комплСксноС число,Β β€” Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΌΡƒΡ€Π°Π²Π΅ΠΉ Арг стоит Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. И Π² Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΌ окошкС, с подписью Β«Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ», ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈ Π΄Π°Π½Π½ΠΎΠΌ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π΅. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΌΡƒΡ€Π°Π²Π΅ΠΉ Арг всСгда Ρ‚ΠΎΡ‡Π½ΠΎ Π·Π½Π°Π΅Ρ‚, Π³Π΄Π΅ находится; Π° для любой Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΠ½ Π·Π½Π°Π΅Ρ‚, ΠΊΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΊΡƒΠ΄Π° данная функция отправляСт Ρ‚ΠΎΡ‡ΠΊΡƒ, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΎΠ½ стоит.