Π§ΠΈΡ‚Π°ΠΉΡ‚Π΅ ΠΊΠ½ΠΈΠ³ΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ Π½Π° Bookidrom.ru! БСсплатныС ΠΊΠ½ΠΈΠ³ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΊΠ»ΠΈΠΊΠ΅

Π§ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΠ½Π»Π°ΠΉΠ½ «ЭлСгантная ВсСлСнная. БупСрструны, скрытыС размСрности ΠΈ поиски ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈΒ». Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†Π° 69

Автор Π‘Ρ€Π°ΠΉΠ°Π½ Π“Ρ€ΠΈΠ½

Π’ частности, здСсь удаётся ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ Π‘ΠΎΠ»ΡŒΡˆΠΎΠ³ΠΎ сТатия Π΄ΠΎ Π½ΡƒΠ»Π΅Π²ΠΎΠ³ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°: радиус ВсСлСнной, измСряСмый с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π»Ρ‘Π³ΠΊΠΈΡ… ΠΌΠΎΠ΄ струн-Π·ΠΎΠ½Π΄ΠΎΠ², всСгда большС планковской Π΄Π»ΠΈΠ½Ρ‹. ВмСсто Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ планковской Π΄Π»ΠΈΠ½Ρ‹ Π² сторону ΠΌΠ΅Π½ΡŒΡˆΠΈΡ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ², радиус, измСряСмый с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ самых Π»Ρ‘Π³ΠΊΠΈΡ… ΠΌΠΎΠ΄, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ Π΄ΠΎ планковской Π΄Π»ΠΈΠ½Ρ‹ ΠΈ Ρ‚ΡƒΡ‚ ΠΆΠ΅ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ расти. Π‘ΠΆΠ°Ρ‚ΠΈΠ΅ замСняСтся Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ.

ИспользованиС Π»Ρ‘Π³ΠΊΠΈΡ… ΠΌΠΎΠ΄ струны согласуСтся с Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ понятиСм Π΄Π»ΠΈΠ½Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ сущСствовало Π·Π°Π΄ΠΎΠ»Π³ΠΎ Π΄ΠΎ открытия Ρ‚Π΅ΠΎΡ€ΠΈΠΈ струн. ИмСнно это понятиС расстояния отвСтствСнно, ΠΊΠ°ΠΊ ΠΎΠ±ΡΡƒΠΆΠ΄Π°Π»ΠΎΡΡŒ Π² Π³Π»Π°Π²Π΅ 5, Π·Π° Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ Π½Π΅Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΠΌΡ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ с Π±ΡƒΡ€Π½Ρ‹ΠΌΠΈ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹ΠΌΠΈ флуктуациями Π² случаС, Ссли ΠΌΠ°ΡΡˆΡ‚Π°Π±Ρ‹, мСньшиС планковских, ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚ΡΡ физичСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌΠΈ. Π—Π΄Π΅ΡΡŒ Π΅Ρ‰Ρ‘ с ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ струн ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ ΡƒΠ»ΡŒΡ‚Ρ€Π°ΠΌΠΈΠΊΡ€ΠΎΡΠΊΠΎΠΏΠΈΡ‡Π΅ΡΠΊΠΈΡ… расстояний. Π’ физичСской Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠ΅ ΠΎΠ±Ρ‰Π΅ΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ матСматичСской Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠ΅ Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π΅ΡΡ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½ΠΎ понятиС расстояния, ΠΈ ΠΎΠ½ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ сколь ΡƒΠ³ΠΎΠ΄Π½ΠΎ ΠΌΠ°Π»Ρ‹ΠΌ. Π’ физичСской Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠ΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ струн ΠΈ Π² Ρ€Π°Π·Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ для Π½Π΅Ρ‘ области ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ β€” ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ β€” Π΅ΡΡ‚ΡŒ Π΄Π²Π° понятия расстояния. Π˜Ρ… осмыслСнноС использованиС Π΄Π°Ρ‘Ρ‚ понятиС расстояния, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ согласуСтся ΠΊΠ°ΠΊ с нашСй ΠΈΠ½Ρ‚ΡƒΠΈΡ†ΠΈΠ΅ΠΉ, Ρ‚Π°ΠΊ ΠΈ с ΠΎΠ±Ρ‰Π΅ΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠ΅ΠΉ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Ссли ΠΌΠ°ΡΡˆΡ‚Π°Π±Ρ‹ достаточно Π²Π΅Π»ΠΈΠΊΠΈ, Π½ΠΎ Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎ отличаСтся ΠΎΡ‚ послСдних, Ссли эти ΠΌΠ°ΡΡˆΡ‚Π°Π±Ρ‹ становятся ΠΌΠ°Π»Ρ‹ΠΌΠΈ. Одно ΠΈΠ· ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠΉ состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ расстояния, мСньшиС планковской Π΄Π»ΠΈΠ½Ρ‹, нСдосягаСмы.

ΠŸΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹Π΅ утвСрТдСния достаточно слоТны, поэтому Π΅Ρ‰Ρ‘ Ρ€Π°Π· ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠ½Ρ‘ΠΌ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π³Π»Π°Π²Π½Ρ‹Ρ… ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ². Если ΠΌΡ‹ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½ΠΎ Π±ΡƒΠ΄Π΅ΠΌ ΠΈΠ³Π½ΠΎΡ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ «простым» ΠΈ Β«Ρ‚Ρ€ΡƒΠ΄Π½Ρ‹ΠΌΒ» ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°ΠΌΠΈ ΠΊ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΡŽ Π΄Π»ΠΈΠ½Ρ‹ ΠΈ Π±ΡƒΠ΄Π΅ΠΌ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠΎΠ΄Ρ‹ Π½Π΅Π½Π°ΠΌΠΎΡ‚Π°Π½Π½ΠΎΠΉ струны ΠΏΡ€ΠΈ стягивании R Π·Π° ΠΏΠ»Π°Π½ΠΊΠΎΠ²ΡΠΊΡƒΡŽ Π΄Π»ΠΈΠ½Ρƒ, Ρ‚ΠΎ, казалось Π±Ρ‹, ΠΌΡ‹ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ смоТСм ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚ΡŒ расстояния, мСньшиС планковской Π΄Π»ΠΈΠ½Ρ‹. Однако, ΠΊΠ°ΠΊ Π³ΠΎΠ²ΠΎΡ€ΠΈΠ»ΠΎΡΡŒ Π²Ρ‹ΡˆΠ΅, слово «расстояния» Π² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΌ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ Π°ΠΊΠΊΡƒΡ€Π°Ρ‚Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Ρƒ этого слова Π΄Π²Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… значСния, ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½ΠΎ ΠΈΠ· Π½ΠΈΡ… соотвСтствуСт Π½Π°ΡˆΠ΅ΠΌΡƒ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΌΡƒ пониманию. А Π² Π΄Π°Π½Π½ΠΎΠΌ случаС, ΠΊΠΎΠ³Π΄Π° R становится мСньшС планковской Π΄Π»ΠΈΠ½Ρ‹, Π½ΠΎ ΠΌΡ‹ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π½Π΅Π½Π°ΠΌΠΎΡ‚Π°Π½Π½Ρ‹Π΅ струны (нСсмотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ тяТСлСС Π½Π°ΠΌΠΎΡ‚Π°Π½Π½Ρ‹Ρ…), ΠΌΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Β«Ρ‚Ρ€ΡƒΠ΄Π½Ρ‹ΠΉΒ» ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΡŽ расстояний, ΠΈ смысл понятия «расстояниС» Π½Π΅ соотвСтствуСт ΠΎΠ±Ρ‰Π΅ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ этого слова. Π­Ρ‚ΠΈ рассуТдСния, ΠΎΠ΄Π½Π°ΠΊΠΎ, Π΄Π°Π»Π΅ΠΊΠΎ выходят Π·Π° Ρ€Π°ΠΌΠΊΠΈ сСмантики ΠΈΠ»ΠΈ Π΄Π°ΠΆΠ΅ Π·Π° Ρ€Π°ΠΌΠΊΠΈ обсуТдСния удобства ΠΈΠ»ΠΈ практичности измСрСния. Π”Π°ΠΆΠ΅ Ссли ΠΌΡ‹ Π²Ρ‹Π±Π΅Ρ€Π΅ΠΌ нСстандартноС понятиС расстояния, считая радиус мСньшим, Ρ‡Π΅ΠΌ планковская Π΄Π»ΠΈΠ½Π°, Π·Π°ΠΊΠΎΠ½Ρ‹ Ρ„ΠΈΠ·ΠΈΠΊΠΈ, ΠΊΠ°ΠΊ ΠΎΠ±ΡΡƒΠΆΠ΄Π°Π»ΠΎΡΡŒ Π² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΡ… ΠΏΡƒΠ½ΠΊΡ‚Π°Ρ…, Π±ΡƒΠ΄ΡƒΡ‚ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ‡Π½Ρ‹ Π·Π°ΠΊΠΎΠ½Π°ΠΌ Ρ„ΠΈΠ·ΠΈΠΊΠΈ Π²ΠΎ ВсСлСнной, Π³Π΄Π΅ этот радиус (Π² ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠΌ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ расстояния) Π±ΡƒΠ΄Π΅Ρ‚ большС планковской Π΄Π»ΠΈΠ½Ρ‹ (ΠΎΠ± этом, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ соотвСтствиС Ρ‚Π°Π±Π». 10.1 ΠΈ 10.2). А для нас Π²Π°ΠΆΠ½Π° ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠ°, Π° Π½Π΅ тСрминология.

На основС этих ΠΈΠ΄Π΅ΠΉ Π‘Ρ€Π°Π½Π΄Π΅Π½Π±Π΅Ρ€Π³Π΅Ρ€, Π’Π°Ρ„Π° ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Ρ„ΠΈΠ·ΠΈΠΊΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ»ΠΈ ΠΏΠ΅Ρ€Π΅ΠΏΠΈΡΠ°Ρ‚ΡŒ Π·Π°ΠΊΠΎΠ½Ρ‹ космологии Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π² модСлях Π‘ΠΎΠ»ΡŒΡˆΠΎΠ³ΠΎ Π²Π·Ρ€Ρ‹Π²Π° ΠΈΠ»ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ Π‘ΠΎΠ»ΡŒΡˆΠΎΠ³ΠΎ сТатия Ρ„ΠΈΠ³ΡƒΡ€ΠΈΡ€ΠΎΠ²Π°Π»Π° Π½Π΅ ВсСлСнная Π½ΡƒΠ»Π΅Π²ΠΎΠ³ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°, Π° ВсСлСнная, всС Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°Π²Π½Ρ‹ планковской Π΄Π»ΠΈΠ½Π΅. БСзусловно, это вСсьма интСрСсноС ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ для устранСния матСматичСских, физичСских ΠΈ логичСских нСстыковок Π² описании ВсСлСнной, Ρ€ΠΎΠΆΠ΄Π°ΡŽΡ‰Π΅ΠΉΡΡ ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ с бСсконСчной ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ ΡΡ…Π»ΠΎΠΏΡ‹Π²Π°ΡŽΡ‰Π΅ΠΉΡΡ Π² эту Ρ‚ΠΎΡ‡ΠΊΡƒ. ΠšΠΎΠ½Π΅Ρ‡Π½ΠΎ, слоТно Π²ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ сСбС Π’ΡΠ΅Π»Π΅Π½Π½ΡƒΡŽ, ΡΠΆΠ°Ρ‚ΡƒΡŽ Π΄ΠΎ ΠΊΡ€ΠΎΡˆΠ΅Ρ‡Π½ΠΎΠΉ пСсчинки планковского Ρ€Π°Π·ΠΌΠ΅Ρ€Π°, Π½ΠΎ Π²ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ сСбС Π’ΡΠ΅Π»Π΅Π½Π½ΡƒΡŽ, ΡΠΆΠ°Ρ‚ΡƒΡŽ Π΄ΠΎ Π½ΡƒΠ»Π΅Π²ΠΎΠ³ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° β€” Π²ΠΎΡ‚ это ΡƒΠΆ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ слишком. Π’Π΅ΡΡŒΠΌΠ° вСроятно, Ρ‡Ρ‚ΠΎ Π±ΠΎΠ»Π΅Π΅ ΡƒΠ΄ΠΎΠ±ΠΎΠ²Π°Ρ€ΠΈΠΌΡƒΡŽ Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Ρƒ стандартной ΠΌΠΎΠ΄Π΅Π»ΠΈ Π‘ΠΎΠ»ΡŒΡˆΠΎΠ³ΠΎ Π²Π·Ρ€Ρ‹Π²Π° даст находящаяся сСйчас Π² Π·Π°Ρ‡Π°Ρ‚ΠΎΡ‡Π½ΠΎΠΌ состоянии струнная космология, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΡ‹ обсудим Π² Π³Π»Π°Π²Π΅ 14.

Насколько ΠΎΠ±Ρ‰ΠΈΠΉ этот Π²Ρ‹Π²ΠΎΠ΄?

Π§Ρ‚ΠΎ ΠΏΡ€ΠΎΠΈΠ·ΠΎΠΉΠ΄Ρ‘Ρ‚, Ссли пространствСнныС измСрСния Π½Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ цикличСскими? Π‘ΡƒΠ΄ΡƒΡ‚ Π»ΠΈ ΠΈ Π² этом случаС справСдливы Π·Π°ΠΌΠ΅Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ утвСрТдСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ струн ΠΎ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… пространствСнных Ρ€Π°Π·ΠΌΠ΅Ρ€Π°Ρ…? Никто Π½Π΅ Π·Π½Π°Π΅Ρ‚ Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π°. Π’Π°ΠΆΠ½Π΅ΠΉΡˆΠ΅Π΅ свойство цикличСских ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π½Π° Π½ΠΈΡ… ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΌΠ°Ρ‚Ρ‹Π²Π°Ρ‚ΡŒ струны. Коль скоро Π½Π° пространствСнныС измСрСния ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΌΠ°Ρ‚Ρ‹Π²Π°Ρ‚ΡŒ струны, Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ Π²Ρ‹Π²ΠΎΠ΄ΠΎΠ² Π±ΡƒΠ΄ΡƒΡ‚ ΠΎΡΡ‚Π°Π²Π°Ρ‚ΡŒΡΡ справСдливыми Π²Π½Π΅ зависимости ΠΎΡ‚ Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° этих ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ. Но Ρ‡Ρ‚ΠΎ Π±ΡƒΠ΄Π΅Ρ‚, Ссли, скаТСм, Π΄Π²Π° измСрСния ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄ сфСры? Π’ΠΎΠ³Π΄Π° нСльзя Π·Π°ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ струны ΡΠΎΡ…Ρ€Π°Π½ΡΡ‚ΡŒ Π½Π°ΠΌΠΎΡ‚Π°Π½Π½ΡƒΡŽ ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΡŽ: ΠΎΠ½ΠΈ всСгда ΠΌΠΎΠ³ΡƒΡ‚ Β«ΡΠΎΡΠΊΠΎΠ»ΡŒΠ·Π½ΡƒΡ‚ΡŒΒ» ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎ Ρ‚ΠΎΠΌΡƒ, ΠΊΠ°ΠΊ Ρ€Π΅Π·ΠΈΠ½ΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΎΡΠΊΠΎΠ»ΡŒΠ·Π½ΡƒΡ‚ΡŒ с мяча, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΠ½Π° натянута. НакладываСт Π»ΠΈ тСория струн ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π½Π° ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Ρ€Π°Π·ΠΌΠ΅Ρ€ ΠΈ Π² этом случаС?

Будя ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ многочислСнных исслСдований, ΠΎΡ‚Π²Π΅Ρ‚ зависит ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, сТимаСтся Π»ΠΈ всё пространствСнноС ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ (ΠΊΠ°ΠΊ Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ… этой Π³Π»Π°Π²Ρ‹), ΠΈΠ»ΠΈ (с Ρ‡Π΅ΠΌ ΠΌΡ‹ столкнёмся Π² Π³Π»Π°Π²Π°Ρ… 11 ΠΈ 13) коллапсируСт ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ «кусок» пространства. Как считаСт Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΠΊΠΎΠ², нСзависимо ΠΎΡ‚ Π²ΠΈΠ΄Π° пространства сущСствуСт ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΡ€Π΅Π΄Π΅Π» сТатия всСго пространствСнного измСрСния, ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ возникновСния этого ΠΏΡ€Π΅Π΄Π΅Π»Π° Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ схоТ с ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠΌ Π² случаС цикличСских ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ. ОбоснованиС сущСствования ΠΏΡ€Π΅Π΄Π΅Π»Π° являСтся Π²Π°ΠΆΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… исслСдований Π²Π²ΠΈΠ΄Ρƒ Π΅Ρ‘ нСпосрСдствСнного влияния Π½Π° ΠΌΠ½ΠΎΠ³ΠΈΠ΅ аспСкты Ρ‚Π΅ΠΎΡ€ΠΈΠΈ струн, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ слСдствия для космологии.

Π—Π΅Ρ€ΠΊΠ°Π»ΡŒΠ½Π°Ρ симмСтрия

Π‘ΠΎΠ·Π΄Π°Π² ΠΎΠ±Ρ‰ΡƒΡŽ Ρ‚Π΅ΠΎΡ€ΠΈΡŽ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Π­ΠΉΠ½ΡˆΡ‚Π΅ΠΉΠ½ связал Ρ„ΠΈΠ·ΠΈΠΊΡƒ тяготСния с Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ΅ΠΉ пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. На ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ взгляд, тСория струн укрСпляСт ΠΈ Ρ€Π°ΡΡˆΠΈΡ€ΡΠ΅Ρ‚ связь ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ„ΠΈΠ·ΠΈΠΊΠΎΠΉ ΠΈ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ΅ΠΉ: свойства ΠΊΠΎΠ»Π΅Π±Π»ΡŽΡ‰ΠΈΡ…ΡΡ струн (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, массы ΠΈ пСрСносимыС ΠΈΠΌΠΈ заряды) Π² Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ стСпСни ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ свойствами свёрнутой ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ пространства. Однако, ΠΊΠ°ΠΊ ΠΌΡ‹ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‡Ρ‚ΠΎ Π²ΠΈΠ΄Π΅Π»ΠΈ, квантовая гСомСтрия, ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π°Ρ гСомСтричСскиС ΠΈ физичСскиС стороны Ρ‚Π΅ΠΎΡ€ΠΈΠΈ струн, ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ рядом ΡƒΠ΄ΠΈΠ²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… свойств. Π’ ΠΎΠ±Ρ‰Π΅ΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, ΠΊΠ°ΠΊ ΠΈ Π² Β«Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΉΒ» Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ радиуса R отличаСтся ΠΎΡ‚ окруТности радиуса 1/R, Ρ‡Ρ‚ΠΎ каТСтся Π½Π΅Π·Ρ‹Π±Π»Π΅ΠΌΡ‹ΠΌ ΠΈ ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½Ρ‹ΠΌ, Π° Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ струн эти окруТности физичСски Π½Π΅Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΌΡ‹. Π­Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚ ΠΏΠΎΠ΄Ρ‚Π°Π»ΠΊΠΈΠ²Π°Π΅Ρ‚ нас ΠΏΠΎΠΉΡ‚ΠΈ дальшС ΠΈ Π·Π°Π΄Π°Ρ‚ΡŒΡΡ вопросом, Π½Π΅ сущСствуСт Π»ΠΈ гСомСтричСских структур пространства, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ Π΄Ρ€ΡƒΠ³ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³Π° Π΅Ρ‰Ρ‘ сильнСС (Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ, Π½ΠΎ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΠΈ Π²ΠΈΠ΄ΠΎΠΌ), Π½ΠΎ, Ρ‚Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, физичСски Π½Π΅Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΌΡ‹Ρ… Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ струн?

Π’ 1988 Π³. ЛСнс Диксон ΠΈΠ· Бтэндфордского Ρ†Π΅Π½Ρ‚Ρ€Π° Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ускоритСлСй сдСлал ваТнСйшСС Π² этом ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ наблюдСниС, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ впослСдствии Π±Ρ‹Π»ΠΎ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΎ Π’ΠΎΠ»ΡŒΡ„Π³Π°Π½Π³ΠΎΠΌ Π›Π΅Ρ€Ρ…Π΅ ΠΈΠ· ЦЕРНа, Π’Π°Ρ„ΠΎΠΉ ΠΈΠ· Π“Π°Ρ€Π²Π°Ρ€Π΄Π° ΠΈ Николасом Π£ΠΎΡ€Π½Π΅Ρ€ΠΎΠΌ, Ρ€Π°Π±ΠΎΡ‚Π°Π²ΡˆΠΈΠΌ Π² Ρ‚ΠΎ врСмя Π² ΠœΠ°ΡΡΠ°Ρ‡ΡƒΡΠ΅Ρ‚ΡΠΊΠΎΠΌ тСхнологичСском институтС. На основС эстСтичСских сообраТСний, основанных Π½Π° понятии симмСтрии, эти Ρ„ΠΈΠ·ΠΈΠΊΠΈ Π²Ρ‹Π΄Π²ΠΈΠ½ΡƒΠ»ΠΈ смСлоС ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Π΄Π²Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… многообразия ΠšΠ°Π»Π°Π±ΠΈβ€“Π―Ρƒ, Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Π΅ Π² качСствС Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ струн, ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌ физичСским Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ.

Π§Ρ‚ΠΎΠ±Ρ‹ Π΄Π°Ρ‚ΡŒ прСдставлСниС ΠΎ Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒΡΡ справСдливой подобная каТущаяся нСвСроятной Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π°, вспомним, Ρ‡Ρ‚ΠΎ число отвСрстий Π² Π΄ΠΎΠ±Π°Π²ΠΎΡ‡Π½Ρ‹Ρ… измСрСниях ΠšΠ°Π»Π°Π±ΠΈβ€“Π―Ρƒ опрСдСляСт число сСмСйств, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π³Ρ€ΡƒΠΏΠΏΠΈΡ€ΡƒΡŽΡ‚ΡΡ возбуТдСния струны. Π­Ρ‚ΠΈ отвСрстия Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ отвСрстиям Ρ‚ΠΎΡ€Π° ΠΈΠ»ΠΈ Π΅Π³ΠΎ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠΉ с нСсколькими Ρ€ΡƒΡ‡ΠΊΠ°ΠΌΠΈ (рис. 9.1). К Π½Π΅ΡΡ‡Π°ΡΡ‚ΡŒΡŽ, Π½Π° Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠΌ рисункС, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΎΠΆΠ½ΠΎ воспроизвСсти Π½Π° страницС, нСльзя ΠΏΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ отвСрстия Π² ΡˆΠ΅ΡΡ‚ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС ΠšΠ°Π»Π°Π±ΠΈβ€“Π―Ρƒ ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ размСрности. Π₯отя Ρ‚Π°ΠΊΠΈΠ΅ отвСрстия Ρ‚Ρ€ΡƒΠ΄Π½ΠΎ Π²ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ, ΠΈΡ… ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Π½Π° понятном матСматичСском языкС. Π‘ΡƒΡ‚ΡŒ состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ число сСмСйств частиц, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΈ возбуТдСниях струны, зависит Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚ числа всСх отвСрстий, Π° Π½Π΅ ΠΎΡ‚ числа отвСрстий ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ размСрности (Π²ΠΎΡ‚ ΠΏΠΎΡ‡Π΅ΠΌΡƒ ΠΌΡ‹ Π½Π΅ Π·Π°Π±ΠΎΡ‚ΠΈΠ»ΠΈΡΡŒ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΈΠ·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Π΅ отвСрстия Π² Π³Π»Π°Π²Π΅ 9). ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ, Ρ‡Ρ‚ΠΎ Ρƒ Π΄Π²ΡƒΡ… пространств ΠšΠ°Π»Π°Π±ΠΈβ€“Π―Ρƒ число отвСрстий Ρ€Π°Π·Π½Ρ‹Ρ… размСрностСй Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎ, Π½ΠΎ суммарноС число отвСрстий ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ. Π’Π°ΠΊ ΠΊΠ°ΠΊ число отвСрстий Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… размСрностСй Π½Π΅ совпадаСт, Π΄Π²Π° этих пространства Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹. Но Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ суммарноС число отвСрстий ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ, число сСмСйств Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ВсСлСнной ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎ ΠΆΠ΅. ΠšΠΎΠ½Π΅Ρ‡Π½ΠΎ, это Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ ΠΎ совпадСнии лишь ΠΎΠ΄Π½ΠΎΠ³ΠΎ физичСского свойства. Π­ΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ всСх физичСских свойств β€” Π³ΠΎΡ€Π°Π·Π΄ΠΎ Π±ΠΎΠ»Π΅Π΅ сильноС Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠ΅, Π½ΠΎ ΠΈ совпадСниС ΠΎΠ΄Π½ΠΎΠ³ΠΎ свойства ΡƒΠΆΠ΅ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ Π² ΠΏΠΎΠ»ΡŒΠ·Ρƒ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π° Диксона–ЛСрхС–Вафы–УорнСра ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒΡΡ Π²Π΅Ρ€Π½ΠΎΠΉ.

Π’ ΠΊΠΎΠ½Ρ†Π΅ 1987 Π³. я поступил Π½Π° стаТировку Π½Π° физичСский Ρ„Π°ΠΊΡƒΠ»ΡŒΡ‚Π΅Ρ‚ Гарвардского унивСрситСта, Π³Π΄Π΅ ΠΌΠ½Π΅ Π²Ρ‹Π΄Π΅Π»ΠΈΠ»ΠΈ ΠΊΠ°Π±ΠΈΠ½Π΅Ρ‚ ΠΏΠΎ сосСдству с ΠΊΠ°Π±ΠΈΠ½Π΅Ρ‚ΠΎΠΌ Π’Π°Ρ„Ρ‹. Π’Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚Π΅ΠΌΠ° ΠΌΠΎΠ΅ΠΉ диссСртации Π±Ρ‹Π»Π° посвящСна физичСским ΠΈ матСматичСским свойствам свёрнутых ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠšΠ°Π»Π°Π±ΠΈβ€“Π―Ρƒ Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ струн, Π’Π°Ρ„Π° Π΄Π΅Ρ€ΠΆΠ°Π» мСня Π² курсС своих Ρ€Π°Π±ΠΎΡ‚ Π² этой области. Когда Π² ΠΊΠΎΠ½Ρ†Π΅ 1988 Π³. ΠΎΠ½, стоя Π½Π° ΠΏΠΎΡ€ΠΎΠ³Π΅ ΠΌΠΎΠ΅Π³ΠΎ ΠΊΠ°Π±ΠΈΠ½Π΅Ρ‚Π°, сообщил ΠΎ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π΅, ΠΊ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΎΠ½ΠΈ ΠΏΡ€ΠΈΡˆΠ»ΠΈ совмСстно с Π›Π΅Ρ€Ρ…Π΅ ΠΈ Π£ΠΎΡ€Π½Π΅Ρ€ΠΎΠΌ, я Π±Ρ‹Π» вСсьма заинтСрСсован, Π½ΠΎ отнёсся ΠΊ Π½Π΅ΠΉ скСптичСски. Π˜Π½Ρ‚Π΅Ρ€Π΅Ρ объяснялся Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π² случаС, Ссли Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π° окаТСтся Π²Π΅Ρ€Π½ΠΎΠΉ, ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΡŒ Π½ΠΎΠ²Ρ‹Π΅ просторы исслСдований Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ струн, Π° скСпсис Π±Ρ‹Π» слСдствиСм понимания Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Π΄ΠΎΠ³Π°Π΄ΠΊΠΈ ΠΈ установлСнныС свойства Ρ‚Π΅ΠΎΡ€ΠΈΠΈ β€” Π΄Π°Π»Π΅ΠΊΠΎ Π½Π΅ ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎ ΠΆΠ΅.