Π§ΠΈΡ‚Π°ΠΉΡ‚Π΅ ΠΊΠ½ΠΈΠ³ΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ Π½Π° Bookidrom.ru! БСсплатныС ΠΊΠ½ΠΈΠ³ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΊΠ»ΠΈΠΊΠ΅

Π§ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΠ½Π»Π°ΠΉΠ½ Β«ΠžΡ‚Π²Π΅Ρ‚Ρ‹ Π½Π° экзамСнационныС Π±ΠΈΠ»Π΅Ρ‚Ρ‹ ΠΏΠΎ экономСтрикС». Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†Π° 21

Автор АнгСлина Π―ΠΊΠΎΠ²Π»Π΅Π²Π°

y=Ξ²0+Ξ²1x(x≀500)+Ξ²2x(x>500),

Π³Π΄Π΅ y – ΡΠ΅Π±Π΅ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ;

x – ΠΎΠ±ΡŠΡ‘ΠΌ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΠ³ΠΎ производства Π·Π° мСсяц;

(x≀500) ΠΈ (xβ€Ί500) – логичСскиС выраТСния, ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‰ΠΈΠ΅ значСния 1, Ссли ΠΎΠ½ΠΈ истинны, ΠΈΠ»ΠΈ 0, Ссли ΠΎΠ½ΠΈ Π»ΠΎΠΆΠ½Ρ‹.

Данная кусочно-линСйная модСль рСгрСссии зависит ΠΎΡ‚ ΠΎΠ±Ρ‰Π΅Π³ΠΎ свободного Ρ‡Π»Π΅Π½Π° Ξ²0 ΠΈ ΡƒΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ коэффициСнта. Π£Π³Π»ΠΎΠ²ΠΎΠΉ коэффициСнт ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π²Π΅Π½ Π»ΠΈΠ±ΠΎ Ξ²1 (Ссли Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ (x≀500) истинно, Ρ‚. Π΅. Ρ€Π°Π²Π½ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅), Π»ΠΈΠ±ΠΎ Ξ²2 (Ссли Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ (xβ€Ί500) истинно, Ρ‚. Π΅. Ρ€Π°Π²Π½ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅).

Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ показатСля ΠΎΠ±ΡŠΡ‘ΠΌΠ° ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ, Ρ€Π°Π²Π½ΠΎΠ΅ 500 Π΅Π΄ΠΈΠ½ΠΈΡ†Π°ΠΌ, считаСтся Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ Ρ€Π°Π·Ρ€Ρ‹Π²Π° ΠΊΡ€ΠΈΠ²ΠΎΠΉ рСгрСссии.

Если ΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠ° Ρ€Π°Π·Ρ€Ρ‹Π²Π° ΠΊΡ€ΠΈΠ²ΠΎΠΉ рСгрСссии Π½Π΅ Π·Π°Π΄Π°Π½Π° ΠΈΠ»ΠΈ Π΅Ρ‘ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Ρ‚ΠΎΡ‡Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, Ρ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ коэффициСнта, Π²ΠΊΠ»ΡŽΡ‡Ρ‘Π½Π½ΠΎΠ³ΠΎ Π² модСль рСгрСссии.

Π—Π°ΠΌΠ΅Π½ΠΈΠΌ логичСскиС выраТСния Π² построСнной кусочно-Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ рСгрСссии Π½Π° коэффициСнт Ξ²3. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ модСль ΠΏΡ€ΠΈΠΌΠ΅Ρ‚ Π²ΠΈΠ΄:

y=Ξ²0+Ξ²1x(x≀β3)+Ξ²2x(x>Ξ²3).

БобствСнно ΠΌΠΎΠ΄Π΅Π»ΠΈ рСгрСссии с Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Ρ€Π°Π·Ρ€Ρ‹Π²Π° Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ скачкообразными измСнСниями зависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… ΠΊΡ€ΠΈΠ²ΠΎΠΉ рСгрСссии. ΠšΡƒΡΠΎΡ‡Π½ΠΎ-Π»ΠΈΠ½Π΅ΠΉΠ½ΡƒΡŽ модСль рСгрСссии ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² собствСнно модСль рСгрСссии с Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Ρ€Π°Π·Ρ€Ρ‹Π²Π°.

Допустим, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ достиТСнии основными Ρ„ΠΎΠ½Π΄Π°ΠΌΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠ³ΠΎ уровня ΠΈΠ·Π½ΠΎΡˆΠ΅Π½Π½ΠΎΡΡ‚ΠΈ, ΡΠ΅Π±Π΅ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ Ρ€Π΅Π·ΠΊΠΎ выросла, Π° Π·Π°Ρ‚Π΅ΠΌ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΠ»Π° ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎ ΡΠ½ΠΈΠΆΠ°Ρ‚ΡŒΡΡ ΠΏΡ€ΠΈ условии увСличСния ΠΎΠ±ΡŠΡ‘ΠΌΠΎΠ² производства Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ. Π’ этом случаС рСгрСссионная Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Ρ‚ Π²ΠΈΠ΄:

y=(Ξ²0+Ξ²1x)(x≀500)+(Ξ²3+Ξ²2x)(x>500).

Π’ связи с Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈ рСгрСссии с Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Ρ€Π°Π·Ρ€Ρ‹Π²Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌΠΈ, Ρ‚ΠΎ нСизвСстныС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ нСльзя ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ классичСского ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ². Для ΠΎΡ†Π΅Π½ΠΊΠΈ этих ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΠΈΡ‚Π΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ оцСнивания ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ максимального правдоподобия.

Если Π² Π½Π°Ρ‡Π°Π»Π΅ экономСтричСского модСлирования ΠΏΠ΅Ρ€Π΅Π΄ исслСдоватСлСм стоит Π²Ρ‹Π±ΠΎΡ€ ΠΌΠ΅ΠΆΠ΄Ρƒ модСлью рСгрСссии, Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ модСлью рСгрСссии (ΠΈΠ»ΠΈ сводящСйся ΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌΡƒ Π²ΠΈΠ΄Ρƒ), Ρ‚ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚Π΅Π½ΠΈΠ΅ отдаётся Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ Ρ„ΠΎΡ€ΠΌΠ°ΠΌ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ.

42. ΠœΠ΅Ρ‚ΠΎΠ΄ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² для ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ рСгрСссии, Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΠΏΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ

Если модСль рСгрСссии являСтся Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΏΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΈΠ»ΠΈ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΏΠΎ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π΅ΠΌΡ‹ΠΌ коэффициСнтам, Π½ΠΎ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ, Ρ‚ΠΎ нСизвСстныС коэффициСнты Π΄Π°Π½Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ классичСского ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ².

Рассмотрим ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² для опрСдСлСния нСизвСстных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΌΠΎΠ΄Π΅Π»ΠΈ рСгрСссии, Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΏΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ.

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»ΠΈΡ‡Π΅ΡΠΊΠ°Ρ функция Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка Π²ΠΈΠ΄Π°

являСтся модСлью рСгрСссии, Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΏΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ xi.

ΠœΠ΅Ρ‚ΠΎΠ΄ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ‚Π°ΠΊΠΈΠ΅ ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ξ²0,Ξ²1 ΠΈ Ξ²2 ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… сумма ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ фактичСских Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ° α»Ή ΠΎΡ‚ расчСтных (тСорСтичСских) Ξ² минимальна:

Π’ процСссС ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ исходной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ рСгрСссии нСизвСстными ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ значСния коэффициСнтов Ξ²0,Ξ²1 ΠΈ Ξ²2, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ значСния Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… извСстны ΠΈΠ· наблюдСний. Для опрСдСлСния ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‚Ρ€Ρ‘Ρ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚ΡΡ частныС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ ΠΈΠ· ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈ ΠΏΡ€ΠΈΡ€Π°Π²Π½ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΊ Π½ΡƒΠ»ΡŽ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ Π±ΡƒΠ΄Π΅Ρ‚ стационарная систСма ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Боставим ΡΡ‚Π°Ρ†ΠΈΠΎΠ½Π°Ρ€Π½ΡƒΡŽ систСму ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»Π° F, Π½Π΅ ΠΏΠΎΠ»ΡŒΠ·ΡƒΡΡΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π·Π°ΠΌΠ΅Π½:

ПослС элСмСнтарных ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ стационарной систСмы ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ систСму Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΡƒΡŽ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ значСния нСизвСстных коэффициСнтов параболичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Данная систСма являСтся систСмой Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²

для параболичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка.

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Π°Ρ систСма Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ являСтся ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠΉ, Ρ‚. ΠΊ. количСство ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ равняСтся количСству нСизвСстных ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…, поэтому коэффициСнты

ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠšΡ€Π°ΠΌΠ΅Ρ€Π° ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Гаусса.

Если Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ n-ΠΎΠΉ стСпСни Π²ΠΈΠ΄Π°

Ρ‚ΠΎ для опрСдСлСния ΠΎΡ†Π΅Π½ΠΎΠΊ нСизвСстных коэффициСнтов Π΄Π°Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ рСгрСссии ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² минимизируСтся Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π» F:

Для опрСдСлСния ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚ΡΡ частныС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ ΠΈΠ· ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈ ΠΏΡ€ΠΈΡ€Π°Π²Π½ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΊ Π½ΡƒΠ»ΡŽ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ Π±ΡƒΠ΄Π΅Ρ‚ стационарная систСма ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

РСшСниСм Π΄Π°Π½Π½ΠΎΠΉ стационарной систСмы ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π±ΡƒΠ΄ΡƒΡ‚ ΠΎΡ†Π΅Π½ΠΊΠΈ нСизвСстных коэффициСнтов полиномиальной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ n-ΠΎΠΉ стСпСни.

43. ΠœΠ΅Ρ‚ΠΎΠ΄ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² для ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ рСгрСссии, Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΠΏΠΎ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π΅ΠΌΡ‹ΠΌ коэффициСнтам

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ функция Π²ΠΈΠ΄Π°

являСтся Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΏΠΎ коэффициСнту Ξ²1 ΠΈ относится ΠΊ классу ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ рСгрСссии, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ привСсти ΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌΡƒ Π²ΠΈΠ΄Ρƒ. Данная модСль характСризуСтся Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ случайная ошибка Ξ΅i ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½ΠΎ связана с Ρ„Π°ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ…i. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, для опрСдСлСния ΠΎΡ†Π΅Π½ΠΎΠΊ нСизвСстных коэффициСнтов Π΄Π°Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ классичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ².

Π”Π°Π½Π½ΡƒΡŽ модСль ΠΌΠΎΠΆΠ½ΠΎ привСсти ΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌΡƒ Π²ΠΈΠ΄Ρƒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ логарифмирования:

Log yi=log Ξ²0+ Ρ…i* logΞ²1+ logΞ΅i.

Для Π±ΠΎΠ»Π΅Π΅ наглядного прСдставлСния Π΄Π°Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ рСгрСссии Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π·Π°ΠΌΠ΅Π½:

log yi=Yi;

log Ξ²0=A;

logΞ²1=B;

logΞ΅i=E.

Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Ρ‘Π½Π½Ρ‹Ρ… Π·Π°ΠΌΠ΅Π½ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π²ΠΈΠ΄ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠΉ ΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅:

Yi=A+BΡ…i+E.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΌΡ‹ Π±ΡƒΠ΄Π΅ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π½Π΅ ΠΊ исходной Ρ„ΠΎΡ€ΠΌΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° ΠΊ Π΅Ρ‘ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅.

Для опрСдСлСния нСизвСстных коэффициСнтов Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ сумму ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ² Π½Π°Π±Π»ΡŽΠ΄Π°Π΅ΠΌΡ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρƒ ΠΎΡ‚ тСорСтичСских Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ α»Ή (Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ, рассчитанных Π½Π° основании ΠΌΠΎΠ΄Π΅Π»ΠΈ рСгрСссии), Ρ‚. Π΅. ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π» МНК Π²ΠΈΠ΄Π°:

ΠžΡ†Π΅Π½ΠΊΠΈ нСизвСстных коэффициСнтов А ΠΈ Π’ Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ находятся ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ систСмы Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π²ΠΈΠ΄Π°:

Данная систСма являСтся систСмой Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ коэффициСнтов А ΠΈ Π’ для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄Π° Yi=A+BΡ…i+E.

Однако основным нСдостатком ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… МНК-ΠΎΡ†Π΅Π½ΠΎΠΊ нСизвСстных коэффициСнтов ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ рСгрСссии, сводимых ΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌΡƒ Π²ΠΈΠ΄Ρƒ, являСтся ΠΈΡ… ΡΠΌΠ΅Ρ‰Ρ‘Π½Π½ΠΎΡΡ‚ΡŒ.

44. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ оцСнивания коэффициСнтов ΠΌΠΎΠ΄Π΅Π»ΠΈ рСгрСссии

Π€ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ ΠΏΠΎΡ‚Π΅Ρ€ΡŒ ΠΈΠ»ΠΈ ошибок называСтся Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π» Π²ΠΈΠ΄Π°

Π’Π°ΠΊΠΆΠ΅ Π² качСствС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎΡ‚Π΅Ρ€ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использована сумма ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΉ ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅ΠΌΡ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ° Ρƒ ΠΎΡ‚ тСорСтичСских Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ α»Ή:

Ѐункция ΠΏΠΎΡ‚Π΅Ρ€ΡŒ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ Π² точности аппроксимации исходных Π΄Π°Π½Π½Ρ‹Ρ… построСнной модСлью рСгрСссии.

Π’ интСрСсах исслСдоватСля ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ошибок. Для этого ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, ΠΎΠ΄Π½Π°ΠΊΠΎ, ΠΈΡ… ΠΎΠ±Ρ‰ΠΈΠΉ нСдостаток Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Π½Π°Π»ΠΈΡ‡ΠΈΠΈ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠ². НапримСр, Ссли ΠΎΡ†Π΅Π½ΠΊΠ° нСизвСстного ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ рСгрСссии Π±ΡƒΠ΄Π΅Ρ‚ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½Π°, Ρ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ функция ΠΏΠΎΡ‚Π΅Ρ€ΡŒ практичСски Π½Π΅ измСнится, Π½ΠΎ сущСствуСт Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΡˆΠΈΠ±ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ рСгрСссии даст Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΎΡ‰ΡƒΡ‚ΠΈΠΌΠΎΠ΅ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ошибок. Π’Π°ΠΊΠΎΠ΅ явлСниС называСтся Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠΌ.

БлСдствиСм Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠ² ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½Π΅ΠΎΠΏΡ€Π°Π²Π΄Π°Π½Π½ΠΎ Π·Π°Π²Ρ‹ΡˆΠ΅Π½Π½Ρ‹Π΅ ΠΈΠ»ΠΈ Π·Π°Π½ΠΈΠΆΠ΅Π½Π½Ρ‹Π΅ ΠΎΡ†Π΅Π½ΠΊΠΈ нСизвСстных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΌΠΎΠ΄Π΅Π»ΠΈ рСгрСссии.

Π˜Π·Π±Π΅ΠΆΠ°Ρ‚ΡŒ попадания Π² Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡƒΡ‚Ρ‘ΠΌ повторСния ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ оцСнивания нСизвСстных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΌΠΎΠ΄Π΅Π»ΠΈ рСгрСссии с ΠΈΠ·ΠΌΠ΅Π½Ρ‘Π½Π½Ρ‹ΠΌΠΈ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ условиями (шагом, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈ Ρ‚. Π΄.).

ΠŸΡ€ΠΈ достиТСнии Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ ошибок глобального ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ°, ΠΎΡ†Π΅Π½ΠΊΠΈ нСизвСстных коэффициСнтов ΠΌΠΎΠ΄Π΅Π»ΠΈ рСгрСссии ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚ΡΡ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ.

К основным ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ошибок относятся:

1) ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΡŒΡŽΡ‚ΠΎΠ½Π°. Π’ соотвСтствии с Π΄Π°Π½Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ основной шаг Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ глобального ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΡŒΡŽΡ‚ΠΎΠ½Π° рассчитываСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅: