81
Franco M. I., Turin L., Mershin A. and Skoulakis E. M. Molecular vibration-sensing component in Drosophila melanogaster olfaction // Proceedings of the National Academy of Science, 2011. β Vol. 108: 9. β P. 3797β3802.
82
Brookes J. C., Hartoutsiou F., Horsfield A. P. and Stoneham A. M. Could humans recognize odor by phonon assisted tunneling? // Physical Review Letters, 2007. β Vol. 98: 3.
83
Urquhart F. A. Found at last: the monarchβs winter home // National geographic. β Aug. 1976.
84
Stanewsky R., Kaneko M., Emery P., Beretta B., Wager-Smith K., Kay S. A., Rosbash M. and Hall J. C. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila // Cell, 1998. β Vol. 95: 5. β P. 681β692.
85
Zhu H., Sauman I., Yuan Q., Casselman A., Emery-Le M., Emery P. and Reppert S. M. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation // PLOS Biology, 2008. β Vol. 6: 1.
86
Reppert D. M., Gegear R. J. and Merlin C. Navigational mechanisms of migrating monarch butterflies // Trends in Neurosciences, 2010. β Vol. 33: 9. β P. 399β406.
87
Guerra P. A., Gegear R. J. and Reppert S. M. A magnetic compass aids monarch butterfly migration // Nature Communications, 2014. β Vol. 5: 4164. β P. 1β8.
88
Middendorf A. T. von. Die Isepiptesen Russlands Grundlagen zur Erforschung der Zugzeiten und Zugrichtungen der VΓΆgel Russlands. β St Petersburg, 1853.
89
Yeagley H. L. and Whitmore F. C. A preliminary study of a physical basis of bird navigation // Journal of Applied Physics, 1947. β Vol. 18: 1035.
90
Walker M. M., Diebel C. E., Haugh C. V., Pankhurst P. M., Montgomery J. C. and Green C. R. Structure and function of the vertebrate magnetic sense // Nature, 1997. β Vol. 390: 6658. β P. 371β376.
91
Hanzlik M., Heunemann C., Holtkamp-Rotzler E., Winklhofer M., Petersen N. and Fleissner G. Superparamagnetic magnetite in the upper beak tissue of homing pigeons // Biometals, 2000. β Vol. 13: 4. β P. 325β331.
92
Mora C. V., Davison M., Wild J. M. and Walker M. M. Magnetoreception and its trigeminal mediation in the homing pigeon // Nature, 2004. β Vol. 432. β P. 508β511.
93
Treiber C., Salzer M., Riegler J., Edelman N., Sugar C., Breuss M., Pichler P., Cadiou H., Saunders M., Lythgoe M., Shaw J. and Keays D. A. Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons // Nature, 2012. β Vol. 484. β P. 367β370.
94
ΠΠ΅ ΠΏΡΡΠ°ΡΡ Ρ ΠΠΌΠ»Π΅Π½ΠΎΠΌ Π’Π°Π½Π½Π΅Π»ΠΎΠΌ, Π²Π΅Π»ΠΈΠΊΠΈΠΌ Π°ΠΌΠ΅ΡΠΈΠΊΠ°Π½ΡΠΊΠΈΠΌ ΡΡΡΠ±ΠΎΠ»ΠΈΡΡΠΎΠΌ 1950-Ρ Π³ΠΎΠ΄ΠΎΠ².
95
Emlen S. T., Wiltschko W., Demong N. J., Wiltschko R. and Bergman S. Magnetic direction finding: evidence for its use in migratory indigo buntings // Science, 1976. β Vol. 193: 4252. β P. 505β508.
96
Pollack L. That nest of wires we call the imagination: a history of some key scientists behind the bird compass sense. β May 2012. β P. 5: http://www.ks.uiuc.edu/History/magnetoreception.
97
Pollack L. That nest of wires we call the imagination: a history of some key scientists behind the bird compass sense. β May 2012, p. 6.
98
Schulten K., Staerk H., Weller A., Werner H.-J. and Nickel B. Magnetic field dependence of the geminate recombination of radical ion pairs in polar solvents // Zeitschrift fΓΌr Physikale Chemie, 1976. β Vol. 101. β P. 371β390.
99
Pollack L. That nest of wires we call the imagination. β P. 11.
100
Schulten K., Swenberg C. E. and Weller A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion // Zeitschrift fΓΌr Physikale Chemie, 1978. β Vol. 111. β P. 1β5.
101
Π’Π΅ΡΠΌΠΈΠ½ Β«ΡΡΠΈΠΏΠ»Π΅ΡΠ½ΡΠΉΒ» Π·Π΄Π΅ΡΡ ΠΌΠΎΠΆΠ΅Ρ Π²Π²Π΅ΡΡΠΈ Π² Π·Π°Π±Π»ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½Π΅ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΠ° Π² ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠ΅, ΡΠ΅ΠΌ Π±ΠΎΠ»Π΅Π΅ ΡΡΠΎ ΡΠ΅ΡΡ ΠΈΠ΄Π΅Ρ ΠΎ ΠΏΠ°ΡΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ², ΡΠ°ΠΊ ΡΡΠΎ Π·Π΄Π΅ΡΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΊΡΠ°ΡΠΊΠΎΠ΅ ΠΏΠΎΡΡΠ½Π΅Π½ΠΈΠ΅: ΡΡΠΈΡΠ°Π΅ΡΡΡ, ΡΡΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ ΠΈΠΌΠ΅Π΅Ρ ΡΠΏΠΈΠ½ 1/2. Π’Π°ΠΊ, ΠΊΠΎΠ³Π΄Π° ΠΏΠ°ΡΠ° ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ² ΠΈΠΌΠ΅ΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΠΏΠΈΠ½Ρ, ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΡΡΠΌΠΌΠ΅ Π΄Π°ΡΡ Π½ΠΎΠ»Ρ (1/2 β 1/2 = 0). ΠΡΠΎ ΠΊΠ°ΡΠ°Π΅ΡΡΡ ΡΠΈΠ½Π³Π»Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠΏΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ. ΠΠΎ ΠΊΠΎΠ³Π΄Π° ΠΈΡ ΡΠΏΠΈΠ½Ρ ΠΎΠ΄Π½ΠΎΠ½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½Ρ, ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡΡΡ (1/2 + 1/2 = 1). Π’Π΅ΡΠΌΠΈΠ½ Β«ΡΡΠΈΠΏΠ»Π΅ΡΠ½ΡΠΉΒ» ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΡΠΎΠΌΡ, ΡΡΠΎ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΡΠΏΠΈΠ½ 1 ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π² ΡΡΠ΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡΡ (ΠΏΠΎ ΠΏΠΎΠ»Ρ, ΠΏΡΠΎΡΠΈΠ² ΠΏΠΎΠ»Ρ, Π² ΡΡΠΎΡΠΎΠ½Ρ).
102
ΠΠ²Π° Π½Π΅ΡΠΏΠ°ΡΠ΅Π½Π½ΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π° Π² ΠΌΠΎΠ»Π΅ΠΊΡΠ»Π΅ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π°, ΠΊΠΎΡΠΎΡΡΠ΅ Π΄Π΅ΡΠΆΠ°Ρ Π΄Π²Π° Π°ΡΠΎΠΌΠ° Π²ΠΌΠ΅ΡΡΠ΅, ΠΎΠ±ΡΡΠ½ΠΎ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π² ΡΡΠΈΠΏΠ»Π΅ΡΠ½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ.
103
From Hore P. The quantum robin // Navigation News. β Oct. 2011.
104
Lambert N. Quantum biology // Nature Physics, 2013. β Vol. 9: 10. Π ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΈ, ΡΠΏΠΎΠΌΡΠ½ΡΡΡΠ΅ Π² Π΄Π°Π½Π½ΠΎΠΌ ΠΈΠ·Π΄Π°Π½ΠΈΠΈ.
105
Leask M. J. M. A physicochemical mechanism for magnetic field detection by migratory birds and homing pigeons // Nature, 1977. β Vol. 267. β P. 144β145.
106
Ritz T., Adem S. and Schulten K. A model for photoreceptor-based magnetoreception in birds // Biophysical Journal, 2000. β Vol. 78: 2. β P. 707β718.
107
Liedvogel M., Maeda K., Henbest K., Schleicher E., Simon T., Timmel C. R., Hore P. J. and Mouritsen H. Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radicalpairs // PLOS One, 2007. β Vol. 2: 10.
108
ΠΡΡΡ, ΠΊΠΎΠ½Π΅ΡΠ½ΠΎ, Π½Π΅ ΠΌΠΈΠ³ΡΠΈΡΡΡΡ, Π΄Π°ΠΆΠ΅ Π² Π΄ΠΈΠΊΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Π΅. ΠΠΎ ΠΎΠ½ΠΈ, ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ, ΠΏΠΎ-ΠΏΡΠ΅ΠΆΠ½Π΅ΠΌΡ ΡΠΎΡ ΡΠ°Π½ΠΈΠ»ΠΈ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΊ ΠΌΠ°Π³Π½ΠΈΡΠΎΡΠ΅ΡΠ΅ΠΏΡΠΈΠΈ.
109
NieΓner C., Denzau S., Stapput K., Ahmad M., Peichl L., Wiltschko W. and Wiltschko R. Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds // Journal of the Royal Society Interface, 2013. β Nov. 6. β Vol. 10: 88.
110
Ritz T., Thalau P., Phillips J. B., Wiltschko R. and Wiltschko W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass // Nature, 2004. β Vol. 429. β P. 177β180.
111
Engels S., Schneider N.-L., Lefeldt N., Hein C. M., Zapka M., Michalik A., Elbers D., Kittel A., Hore P. J. and Mouritsen H. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird // Nature, 2014. β Vol. 509. β P. 353β356.
112
Gauger E. M., Rieper E., Morton J. J., Benjamin S. C. and Vedral V. Sustained quantum coherence and entanglement in the avian compass // Physical Review Letters, 2011. β Vol. 106: 4.
113
Ahmad M., Galland P., Ritz T., Wiltschko R. and Wiltschko W. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana // Planta, 2007. β Vol. 225: 3. β P. 615β624.
114
Vacha M., Puzova T. and Kvicalova M. Radio frequency magnetic fields disrupt magnetoreception in American cockroach // Journal of Experimental Biology, 2009. β Vol. 212: 21. β P. 3473β3477.
115
ΠΠΎ Π½ΠΎΠ²ΡΠΌ Π΄Π°Π½Π½ΡΠΌ, Π² 2010 Π³ΠΎΠ΄Ρ Π² ΡΠΎΠΌ ΠΆΠ΅ ΡΠ°ΠΉΠΎΠ½Π΅ Π±ΡΠ»ΠΎ ΡΠΆΠ΅ ΠΌΠ΅Π½Π΅Π΅ 93Β°: https://ru.wikipedia.org/wiki/ΠΠΎΠ»ΡΡΡ_Ρ ΠΎΠ»ΠΎΠ΄Π°. β ΠΡΠΈΠΌΠ΅Ρ. ΠΏΠ΅Ρ.
116
ΠΠ½ΠΎ Π»Π΅Π΄Π½ΠΈΠΊΠ°, Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ Π½Π°ΠΊΡΡΠ²Π°ΡΡΠ΅Π³ΠΎ ΠΎΠ·Π΅ΡΠΎ, ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π»ΠΎΡΡ Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΠΌ 400 ΡΡΡΡΡ Π»Π΅Ρ Π½Π°Π·Π°Π΄, ΠΎΠ΄Π½Π°ΠΊΠΎ ΡΠ°ΠΌΠΎ ΠΎΠ·Π΅ΡΠΎ ΠΌΠΎΠ³Π»ΠΎ Π·Π°ΠΌΠ΅ΡΠ·Π½ΡΡΡ Π΅ΡΠ΅ ΡΠ°Π½ΡΡΠ΅. ΠΠΎΠΊΠ° Π½Π΅ΡΡΠ½ΠΎ, ΡΡΠΎΡ Π»ΠΈ Π»Π΅Π΄Π½ΠΈΠΊ Π½Π°ΠΊΡΡΠ» ΠΎΠ·Π΅ΡΠΎ ΠΈΠ·Π½Π°ΡΠ°Π»ΡΠ½ΠΎ, ΠΈΠ»ΠΈ ΠΎΠ½ ΠΏΡΠΈΡΠ΅Π» Π½Π° ΡΠΌΠ΅Π½Ρ Π±ΠΎΠ»Π΅Π΅ ΡΠ°Π½Π½ΠΈΠΌ Π»Π΅Π΄Π½ΠΈΠΊΠ°ΠΌ, Π° ΡΠ°ΠΊΠΆΠ΅ Π·Π°ΠΌΠ΅ΡΠ·Π°Π»ΠΎ Π»ΠΈ ΠΎΠ·Π΅ΡΠΎ Π² ΠΏΠ΅ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ΅ΠΆΠ΄Ρ Π»Π΅Π΄Π½ΠΈΠΊΠΎΠ²ΡΠΌΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°ΠΌΠΈ.
117
ΠΡΠ³Π°Π½ΠΈΠ·ΠΌΡ, ΠΆΠΈΠ²ΡΡΠΈΠ΅ Π² ΡΡΠ΅Π΄Π°Ρ Ρ ΡΠΊΡΡΡΠ΅ΠΌΠ°Π»ΡΠ½ΡΠΌΠΈ (Ρ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°) ΡΡΠ»ΠΎΠ²ΠΈΡΠΌΠΈ.
118
Shtarkman Y. M., Kocer Z. A., Edgar R., Veerapaneni R. S., DβElia T., Morris P. F. and Rogers S. O. Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya // PLOS One, 2013. β Vol. 8: 7.
119
ΠΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΠΌΡΡΠ°ΡΠΈΠΉ Π² Π³Π΅Π½Π°Ρ , ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΡΡΠΈΡ ΡΠΎΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ. ΠΡΡΠ°ΡΠΈΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ Π½Π΅ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅ΠΌΠΎΠΌΡ ΡΠΎΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΊ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ ΠΎΠΏΡΡ ΠΎΠ»ΠΈ.
120
Watson J. D. and Crick F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid // Nature, 1953. β Vol. 171. β P. 737β738.
121
Π Π°Π·ΡΠΌΠ΅Π΅ΡΡΡ, Π½ΠΎΠ²Π°Ρ ΡΠ΅ΠΎΡΠΈΡ ΡΠ²ΠΎΠ»ΡΡΠΈΠΈ Ρ ΡΠ°ΠΊΠΈΠΌ ΠΆΠ΅ ΡΡΠΏΠ΅Ρ ΠΎΠΌ ΠΌΠΎΠ³Π»Π° Π±Ρ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΡΠ΅ΠΎΡΠΈΠ΅ΠΉ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΡΠ±ΠΎΡΠ° Π£ΠΎΠ»Π»Π΅ΡΠ°, ΠΏΠΎ ΠΈΠΌΠ΅Π½ΠΈ Π²Π΅Π»ΠΈΠΊΠΎΠ³ΠΎ Π±ΡΠΈΡΠ°Π½ΡΠΊΠΎΠ³ΠΎ Π½Π°ΡΡΡΠ°Π»ΠΈΡΡΠ° ΠΈ Π³Π΅ΠΎΠ³ΡΠ°ΡΠ° ΠΠ»ΡΡΡΠ΅Π΄Π° Π Π°ΡΡΠ΅Π»Π° Π£ΠΎΠ»Π»Π΅ΡΠ°, ΠΊΠΎΡΠΎΡΡΠΉ, ΠΏΡΡΠ΅ΡΠ΅ΡΡΠ²ΡΡ Π² ΡΡΠΎΠΏΠΈΠΊΠ°Ρ , ΠΏΠΎΠ΄Ρ Π²Π°ΡΠΈΠ» ΠΌΠ°Π»ΡΡΠΈΡ ΠΈ, ΠΏΡΠΎΡ ΠΎΠ΄Ρ Π»Π΅ΡΠ΅Π½ΠΈΠ΅ Π² Π±ΠΎΠ»ΡΠ½ΠΈΡΠ΅ ΠΈ ΡΠ°ΡΡΡΠΆΠ΄Π°Ρ ΠΎ Π²ΡΠΆΠΈΠ²Π°Π½ΠΈΠΈ, ΠΏΡΠΈΡΠ΅Π» ΠΊ ΡΠ΅ΠΌ ΠΆΠ΅ ΠΈΠ΄Π΅ΡΠΌ, ΡΡΠΎ ΠΈ ΠΠ°ΡΠ²ΠΈΠ½.
122
ΠΠ°ΡΠ²ΠΈΠ½ Π§. ΠΡΠΎΠΈΡΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄ΠΎΠ² ΠΏΡΡΠ΅ΠΌ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΡΠ±ΠΎΡΠ° ΠΈΠ»ΠΈ ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΠ΅ Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΡΡ ΡΠ°Ρ Π² Π±ΠΎΡΡΠ±Π΅ Π·Π° ΠΆΠΈΠ·Π½Ρ. ΠΠ΅Ρ. Ρ Π°Π½Π³Π». 6-Π³ΠΎ ΠΈΠ·Π΄. [1872]. β Π‘ΠΠ±.: 1991. ΠΠ»Π°Π²Π° 4.
123
Π’Π΅ΡΠΌΠΈΠ½ Β«Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉΒ» Π±ΡΠ» ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ Π² 1905 Π³ΠΎΠ΄Ρ Π£ΠΈΠ»ΡΡΠΌΠΎΠΌ ΠΡΡΡΠΎΠ½ΠΎΠΌ, Π°Π½Π³Π»ΠΈΠΉΡΠΊΠΈΠΌ Π³Π΅Π½Π΅ΡΠΈΠΊΠΎΠΌ ΠΈ ΡΡΠΎΡΠΎΠ½Π½ΠΈΠΊΠΎΠΌ ΠΈΠ΄Π΅ΠΉ ΠΠ΅Π½Π΄Π΅Π»Ρ. Π’Π΅ΡΠΌΠΈΠ½ Β«Π³Π΅Π½Β» Π±ΡΠ» Π²Π²Π΅Π΄Π΅Π½ Π² Π½Π°ΡΡΠ½ΡΠΉ ΠΎΠ±ΠΎΡΠΎΡ ΡΠ΅ΡΡΡΡΠΌΡ Π³ΠΎΠ΄Π°ΠΌΠΈ ΠΏΠΎΠ·ΠΆΠ΅ Π΄Π°ΡΡΠΊΠΈΠΌ Π±ΠΎΡΠ°Π½ΠΈΠΊΠΎΠΌ ΠΠΈΠ»ΡΠ³Π΅Π»ΡΠΌΠΎΠΌ ΠΠΎΠ³Π°Π½ΡΠ΅Π½ΠΎΠΌ Π΄Π»Ρ ΡΠ°Π·Π»ΠΈΡΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ Π²Π½Π΅ΡΠ½ΠΈΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄Π° (Π΅Π³ΠΎ ΡΠ΅Π½ΠΎΡΠΈΠΏΠ°) ΠΈ Π΅Π³ΠΎ Π³Π΅Π½ΠΎΠ² (Π³Π΅Π½ΠΎΡΠΈΠΏΠ°).
124
Watson J. D. and Crick F. H. C. Genetic implications of the structure of deoxyribonucleic acid // Nature, 1953. β Vol. 171. β P. 964β969.
125
ΠΠ»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΡΠ΅ ΡΠ°ΡΡΠΎΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ Π³ΡΠ°Π½ΠΈΠ½Π° ΠΈ ΡΠΈΠΌΠΈΠ½Π° Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ°ΠΊΠΆΠ΅ Π΅Π½ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΠΎΠΉ ΠΈΠ»ΠΈ ΠΊΠ΅ΡΠΎΡΠΎΡΠΌΠΎΠΉ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠΎΠ½ΠΎΠ²; ΡΠ°ΡΡΠΎΠΌΠ΅ΡΡ ΡΠΈΡΠΎΠ·ΠΈΠ½Π° ΠΈ Π°Π΄Π΅Π½ΠΈΠ½Π° Π½Π°Π·ΡΠ²Π°ΡΡ ΠΊΠ΅ΡΠΎΡΠΎΡΠΌΠΎΠΉ ΠΈΠ»ΠΈ Π°ΠΌΠΈΠ½ΠΎΡΠΎΡΠΌΠΎΠΉ.
126
Wang W., Hellinga H. W. and Beese L. S. Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis // Proceedings of the National Academy of Sciences, 2011. β Vol. 108: 43. β P. 17 644β17 648.
127
Datta A. and Jinks-Robertson S. Association of increased spontaneous mutation rates with high levels of transcription in yeast // Science, 1995. β Vol. 268: 5217. β P. 1616β1619.
128
Bachl J., Carlson C., Gray-Schopfer V., Dessing M. and Olsson C. Increased transcription levels induce higher mutation rates in a hypermutating cell line // Journal of Immunology, 2001. β Vol. 166: 8.
129
Cui P., Ding F., Lin Q., Zhang L., Li A., Zhang Z., Hu S. and Yu J. Distinct contributions of replication and transcription to mutation rate variation of human genomes // Genomics, Proteomics and Bioinformatics, 2012. β Vol. 10: 1. β P. 4β10.
130
Cairns J., Overbaugh J. and Millar S. The origin of mutants // Nature, 1988. β Vol. 335. β P. 142β145.
131
Cairns John on Watson Jim. Cold Spring Harbor Oral History Collection. ΠΠ½ΡΠ΅ΡΠ²ΡΡ Π΄ΠΎΡΡΡΠΏΠ½ΠΎ ΠΏΠΎ ΡΡΡΠ»ΠΊΠ΅: http://library.cshl.edu/oralhistory/interview/james-d-watson/meeting-jim-watson/watson/.