Π§ΠΈΡ‚Π°ΠΉΡ‚Π΅ ΠΊΠ½ΠΈΠ³ΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ Π½Π° Bookidrom.ru! БСсплатныС ΠΊΠ½ΠΈΠ³ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΊΠ»ΠΈΠΊΠ΅

Π§ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΠ½Π»Π°ΠΉΠ½ Β«Π”Π΅ΡΡΡ‚ΡŒ Π²Π΅Π»ΠΈΠΊΠΈΡ… ΠΈΠ΄Π΅ΠΉ Π½Π°ΡƒΠΊΠΈ. Как устроСн наш ΠΌΠΈΡ€.Β». Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†Π° 83

Автор ΠŸΠΈΡ‚Π΅Ρ€ Π­Ρ‚ΠΊΠΈΠ½Π·

Π― Π΄ΠΎΠ»ΠΆΠ΅Π½ ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ гСомСтрия пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, называСмая Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ΅ΠΉ Минковского, Ρ‚Ρ€ΡƒΠ΄Π½Π΅Π΅ для восприятия, Ρ‡Π΅ΠΌ гСомСтрия Ρ‚ΠΎΠ»ΡŒΠΊΠΎ пространства. Однако ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ замСчания ΠΏΡ€ΠΈΠ·Π²Π°Π½Ρ‹ Π΄Π°Ρ‚ΡŒ Π²Π°ΠΌ Π²ΠΏΠ΅Ρ‡Π°Ρ‚Π»Π΅Π½ΠΈΠ΅ ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ‡Π΅Ρ€Ρ‚Π°Ρ… пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ Π΅Π³ΠΎ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠΈ ΠΎΡ‚ пространства ΠΊΠ°ΠΊ Ρ‚Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ. Π­Ρ‚ΠΎΡ‚ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» Π½Π΅ являСтся Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌ для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ послСдуСт дальшС, поэтому, Ссли ΠΎΠ½ покаТСтся слСгка приводящим Π² Π½Π΅Π΄ΠΎΡƒΠΌΠ΅Π½ΠΈΠ΅, Π½Π΅ Π±Π΅ΡΠΏΠΎΠΊΠΎΠΉΡ‚Π΅ΡΡŒ, ΠΏΡƒΡΡ‚ΡŒ Ρ‚Π°ΠΊ ΠΈ Π±ΡƒΠ΄Π΅Ρ‚. Π§Ρ‚ΠΎΠ±Ρ‹ ΡΠΎΠ·Π΄Π°Ρ‚ΡŒ Ρƒ вас ΡƒΠ²Π΅Ρ€Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π² прСдставлСниях ΠΎ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π°Ρ… этого Ρ€ΠΎΠ΄Π°, я Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡΡŒ Ρ‚Π΅ΠΌ ΠΆΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΈ ΠΏΡ€Π΅ΠΆΠ΄Π΅: Ρ‚Π°ΠΊ ΠΆΠ΅ ΠΊΠ°ΠΊ ΠΌΡ‹ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ способны ΡƒΠ»ΠΎΠ²ΠΈΡ‚ΡŒ проблСск понимания Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пространства, постСпСнно увСличивая Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚ΡŒΡΡ ΠΊ пониманию Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пространства-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π½Π°Ρ‡Π°Π² с мСньшСго числа ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ.

Π’Π°ΠΊΠΈΡ… Π²Π΅Ρ‰Π΅ΠΉ, ΠΊΠ°ΠΊ Π½ΡƒΠ»ΡŒΠΌΠ΅Ρ€Π½ΠΎΠ΅ ΠΈ ΠΎΠ΄Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ пространство-врСмя, Π½Π΅ сущСствуСт. Π Π°Π·Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ пространством ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ (ΠΊΠ°ΠΊ ΠΎΠ½ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΎ Π² сигнатурС ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΈ) Π·Π½Π°Ρ‡ΠΈΠΌΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ, ΠΊΠΎΠ³Π΄Π° ΠΌΡ‹ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΠΌ ΠΊ Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠΌΡƒ пространству-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (2-пространству-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ), с ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ΠΌ для пространства ΠΈ ΠΎΠ΄Π½ΠΈΠΌ для Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, 2-пространство-врСмя ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π½Π° плоском Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅, с ΠΎΠ΄Π½ΠΎΠΉ осью, ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‰Π΅ΠΉ пространство, Π° Π΄Ρ€ΡƒΠ³ΠΎΠΉ врСмя (рис. 9.5). Π›ΠΈΠ½ΠΈΠΈ Π½Π° Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ΅ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΡƒΡ‚ΠΈ частицы Π² этом ΠΌΠΈΡ€Π΅ ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Минковский Π½Π°Π·Ρ‹Π²Π°Π» ΠΌΠΈΡ€ΠΎΠ²Ρ‹ΠΌΠΈ линиями. Π’Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ мировая линия ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ°Π΅Ρ‚ ΠΈΡΡ‚ΠΎΡ€ΠΈΡŽ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΉ частицы: частица остаСтся Π² Ρ‚ΠΎΠΉ ΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠ΅ пространства, Π° врСмя возрастаСт. ΠœΠΈΡ€ΠΎΠ²Π°Ρ линия, ΠΎΡ‚ΠΊΠ»ΠΎΠ½ΡΡŽΡ‰Π°ΡΡΡ Π²ΠΏΡ€Π°Π²ΠΎ, прСдставляСт частицу, ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎ Π΄Π²ΠΈΠΆΡƒΡ‰ΡƒΡŽΡΡ Π²ΠΏΡ€Π°Π²ΠΎ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ частицы смСщаСтся Π½Π°ΠΏΡ€Π°Π²ΠΎ ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ возрастания Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠœΠΈΡ€ΠΎΠ²Π°Ρ линия с Π½Π°ΠΊΠ»ΠΎΠ½ΠΎΠΌ 45Β° соотвСтствуСт частицС, которая двиТСтся Π½Π°ΠΏΡ€Π°Π²ΠΎ со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ свСта, проходя расстояниС Π² 1 ΠΌ Π·Π° 1 ΠΌ свСтового Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (30 Ρ‚Ρ€ΠΈΠ»Π»ΠΈΠΎΠ½Π½Ρ‹Ρ… сСкунды Π² ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… Π΅Π΄ΠΈΠ½ΠΈΡ†Π°Ρ…). Π­Ρ‚Π° линия прСдставляСт самоС быстроС ΠΈΠ· Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ частицы, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π½ΠΈΡ‡Ρ‚ΠΎ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ быстрСС Ρ‡Π΅ΠΌ свСт, ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ бСзмассовыС частицы (Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ Ρ„ΠΎΡ‚ΠΎΠ½Ρ‹) ΠΌΠΎΠ³ΡƒΡ‚ Π΄ΠΎΡΡ‚ΠΈΠ³Π°Ρ‚ΡŒ этой скорости. ВсС Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ ΠΌΠΈΡ€ΠΎΠ²Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ Π»Π΅ΠΆΠ°Ρ‚ ΠΌΠ΅ΠΆΠ΄Ρƒ Π»ΠΈΠ½ΠΈΠ΅ΠΉ, Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Π½ΠΎΠΉ Π½Π° 45Β° Π²Π»Π΅Π²ΠΎ (частица, двиТущаяся Π²Π»Π΅Π²ΠΎ со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ свСта) ΠΈ Π»ΠΈΠ½ΠΈΠ΅ΠΉ, Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Π½ΠΎΠΉ Π½Π° 45Β° Π²ΠΏΡ€Π°Π²ΠΎ (частица, двиТущаяся Π²ΠΏΡ€Π°Π²ΠΎ со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ свСта).

Рис. 9.5. ΠœΠΈΡ€ΠΎΠ²Π°Ρ линия частицы β€” это просто слСд Π΅Π΅ полоТСния ΠΏΡ€ΠΈ возрастании Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π˜Π»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΡ слСва ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ°Π΅Ρ‚ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΡƒΡŽ частицу. Она остаСтся Π² Ρ‚ΠΎΠΌ ΠΆΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΈ возрастании Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Ρ‚Π°ΠΊ Ρ‡Ρ‚ΠΎ Π΅Π΅ мировая линия Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Π°. Π˜Π»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΡ справа ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Ρ‚Ρƒ ΠΆΠ΅ частицу, двиТущСйся с постоянной ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Π½Π°ΠΏΡ€Π°Π²ΠΎ, Ρ‚Π°ΠΊ Ρ‡Ρ‚ΠΎ с ростом Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΠ½Π° располагаСтся всС ΠΏΡ€Π°Π²Π΅Π΅. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π΅Π΅ мировая линия ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π°ΠΊΠ»ΠΎΠ½ Π²ΠΏΡ€Π°Π²ΠΎ. Π›ΠΈΠ½ΠΈΠΈ с Π½Π°ΠΊΠ»ΠΎΠ½ΠΎΠΌ 45Β° Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌΠΈΡ€ΠΎΠ²Ρ‹ΠΌΠΈ линиями свСта, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ 1 ΠΌ Π·Π° 1 ΠΌ свСтового Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Ничто Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ быстрСС, Ρ‡Π΅ΠΌ свСт, поэтому Π½Π΅ сущСствуСт ΠΌΠΈΡ€ΠΎΠ²Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ с Π½Π°ΠΊΠ»ΠΎΠ½ΠΎΠΌ большС, Ρ‡Π΅ΠΌ Π½Π° этот ΡƒΠ³ΠΎΠ».

Π‘Π΄Π΅Π»Π°Π΅ΠΌ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ шаг Π² 3-пространство-врСмя с двумя пространствСнными измСрСниями ΠΈ ΠΎΠ΄Π½ΠΈΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ (рис. 9.6), Π³Π΄Π΅ частица ΠΏΡ€ΠΈ возрастании Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°Ρ‚ΡŒΡΡ ΠΏΠΎ Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠΉ плоскости. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π½ΠΈ ΠΎΠ΄Π½Π° частица Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ, большСй скорости свСта, всС ΠΌΠΈΡ€ΠΎΠ²Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ Π»Π΅ΠΆΠ°Ρ‚ Π²Π½ΡƒΡ‚Ρ€ΠΈ конуса, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Π»ΠΈΠ½ΠΈΠΈ, Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ 45Β° ΠΊ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΠΈ. Π­Ρ‚ΠΎΡ‚ конус называСтся свСтовым конусом события, Π»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ Π² Π΅Π³ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΌΠΈΡ€ΠΎΠ²Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ, ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌΡ‹Π΅ свСтом, двиТущимся со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ свСта, Π»Π΅ΠΆΠ°Ρ‚ Π½Π° повСрхности этого конуса. Π’Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ сСбС ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠΉ ΠΈΠΌΠΏΡƒΠ»ΡŒΡ свСта, Π½Π°Ρ‡ΠΈΠ½Π°ΡŽΡ‰ΠΈΠΉ ΠΏΡƒΡ‚ΡŒ ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ: со Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ ΠΎΠ½ распространяСтся ΠΊΡ€ΡƒΠ³Π°ΠΌΠΈ, ΠΏΠΎΠΊΠ°Π·Π°Π½Π½Ρ‹ΠΌΠΈ Π½Π° плоскости, ΠΈ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π½Ρ‹ΠΌΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½Π°ΠΌΠΈ Π½Π° свСтовом конусС.

Рис. 9.6. Π”Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠ΅ пространство, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ частица ΠΌΠΎΠΆΠ΅Ρ‚ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ ΠΏΠΎ плоскости, с ΠΌΠΈΡ€ΠΎΠ²ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π³Π΄Π΅-Π½ΠΈΠ±ΡƒΠ΄ΡŒ Π²Π½ΡƒΡ‚Ρ€ΠΈ конуса, ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π° ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΠΈ слСва. Π­Ρ‚ΠΎΡ‚ конус являСтся свСтовым конусом, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΌΠΈΡ€ΠΎΠ²Ρ‹ΠΌΠΈ линиями ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° свСта, Π²Ρ‹ΠΏΡƒΡ‰Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ· Π΅Π³ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹. Никакая мировая линия Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π»Π΅ΠΆΠ°Ρ‚ΡŒ Π²Π½Π΅ конуса, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½Π° соотвСтствовала Π±Ρ‹ двиТСнию со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ, большСй скорости свСта.

ΠžΠ±Ρ€Π°Ρ‰Π°ΡΡΡŒ ΠΊ 4-пространству-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π½Π°ΠΌ слСдуСт ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ сСбС Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½Ρ‹ΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ конуса, исходящСго ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ события, сСчСниСм ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π² ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ являСтся трСхмСрная сфСра (ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ распространСния сфСричСского ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° свСта). Π˜Π·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π΅Π³ΠΎ находится ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ ΠΌΠΎΠΈΡ… возмоТностСй, ΠΈ я Π΄Π°ΠΆΠ΅ Π½Π΅ ΠΏΡ€Π΅Ρ‚Π΅Π½Π΄ΡƒΡŽ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ обладаю способом Π΅Π³ΠΎ прСдставлСния Π½Π° Π±ΡƒΠΌΠ°Π³Π΅. К ΡΡ‡Π°ΡΡ‚ΡŒΡŽ, ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ свСтового конуса для ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° Π² Π΄Π²ΡƒΡ… измСрСниях Π½Π° рис. 9.6 Π΄Π°Π΅Ρ‚ всС, Ρ‡Ρ‚ΠΎ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΡƒΠΆΠ½ΠΎ для понимания.

Π‘Π²Π΅Ρ‚ΠΎΠ²ΠΎΠΉ конус Π΄Π΅Π»ΠΈΡ‚ события Π½Π° Π΄Π²Π° класса. Рассмотрим, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, события A ΠΈ B Π½Π° рис. 9.7. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ B Π»Π΅ΠΆΠΈΡ‚ Π²Π½ΡƒΡ‚Ρ€ΠΈ свСтового конуса с Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ Π² A, сигналы ΠΈΠ· A ΠΈΠΌΠ΅ΡŽΡ‚ достаточно Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ B ΠΈ ΠΏΠΎΠ²Π»ΠΈΡΡ‚ΡŒ Π½Π° событиС B. Рассмотрим Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ события A ΠΈ C. Π‘ΠΎΠ±Ρ‹Ρ‚ΠΈΠ΅ A Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠ²Π»ΠΈΡΡ‚ΡŒ Π½Π° событиС C, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ послСднСС Π»Π΅ΠΆΠΈΡ‚ Π²Π½Π΅ свСтового конуса с Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ Π² A, ΠΈ Π½ΠΈΠΊΠ°ΠΊΠΎΠΉ сигнал ΠΈΠ· A Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ C, Ρ‡Ρ‚ΠΎΠ±Ρ‹ произвСсти ΠΊΠ°ΠΊΠΎΠ΅-Π»ΠΈΠ±ΠΎ дСйствиС. ΠœΡ‹ Π³ΠΎΠ²ΠΎΡ€ΠΈΠΌ, Ρ‡Ρ‚ΠΎ A ΠΈ B (ΠΈ всС Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π²Π½ΡƒΡ‚Ρ€ΠΈ свСтового конуса ΠΈΠ»ΠΈ Π½Π° Π½Π΅ΠΌ) ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π½ΠΎ связанными, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ C (ΠΈ всС Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π²Π½Π΅ свСтового конуса) Π½Π΅ связаны ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π½ΠΎ с A. ΠœΡ‹ ΡƒΠΆΠ΅ ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π½ΠΎΡΡ‚ΡŒ являСтся становой ΠΆΠΈΠ»ΠΎΠΉ Π½Π°ΡƒΠΊΠΈ, поэтому Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚, Ρ‡Ρ‚ΠΎ свСтовой конус Π΄Π΅Π»ΠΈΡ‚ пространство-врСмя Π½Π° области событий, связанных ΠΈ Π½Π΅ связанных ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π½ΠΎ, ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ³Ρ€ΠΎΠΌΠ½ΡƒΡŽ Π²Π°ΠΆΠ½ΠΎΡΡ‚ΡŒ для нашСго понимания ΠΌΠΈΡ€Π°. НапримСр, ΠΊΠ°ΠΊΠΎΠ΅ Π±Ρ‹ событиС Π½ΠΈ ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ Π² A, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, распад Π½Π° куски ΠΏΠ»Π°Π½Π΅Ρ‚Ρ‹ ЗСмля Π² полдСнь ΠΏΡ€ΠΎΡˆΠ»ΠΎΠ³ΠΎ Π²ΠΎΡΠΊΡ€Π΅ΡΠ΅Π½ΡŒΡ, ΠΎΠ½ΠΎ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠ²Π»ΠΈΡΡ‚ΡŒ Π½Π° событиС Π² C, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π»Π΅ΠΊΡ†ΠΈΠ΅ΠΉ ΠΏΠΎ истории космоса, Ρ‡ΠΈΡ‚Π°Π΅ΠΌΠΎΠΉ Π² ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ понСдСльник Π½Π° ΠΏΠ»Π°Π½Π΅Ρ‚Π΅ ΠΎΠΊΠΎΠ»ΠΎ Π·Π²Π΅Π·Π΄Ρ‹, вСсьма ΡƒΠ΄Π°Π»Π΅Π½Π½ΠΎΠΉ ΠΎΡ‚ Π—Π΅ΠΌΠ»ΠΈ.

Рис. 9.7. Π‘Π²Π΅Ρ‚ΠΎΠ²ΠΎΠΉ конус Π΄Π΅Π»ΠΈΡ‚ события Π½Π° Ρ‚Π΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π½ΠΎ связаны ΠΈ Π½Π΅ связанныС ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π½ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ собой. Если событиС происходит Π² A, ΠΎΠ½ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π²Π»ΠΈΡΡ‚ΡŒ Π½Π° события Π² свСтовом конусС, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ B, Π½ΠΎ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π²Π»ΠΈΡΡ‚ΡŒ Π½Π° события Π²Π½Π΅ свСтового конуса, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ C, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ сигнал, выходящий ΠΈΠ· A, Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π΄ΠΎΠΉΡ‚ΠΈ Π΄ΠΎ C.

ВсС ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΡ‰ΡƒΡ‰Π°Ρ‚ΡŒΡΡ, ΠΊΠ°ΠΊ довольно-Ρ‚Π°ΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΌΡ‹ΠΉ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π», ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π»ΠΈΠ½ΠΈΠΈ ΠΈ конусы, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΡ‹ нарисовали, вторят свойствам ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠ³ΠΎ пространства. Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΠΌ ΠΊ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡŽ ΠΌΠ΅ΠΆΠ΄Ρƒ Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²Ρ‹ΠΌ пространством ΠΈ пространством Минковского, ΠΊ самому Ρ‚Ρ€ΡƒΠ΄Π½ΠΎΠΌΡƒ для ΠΈΠ½Ρ‚ΡƒΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ восприятия свойству. Π’ пространствС прямая линия являСтся ΠΊΡ€Π°Ρ‚Ρ‡Π°ΠΉΡˆΠΈΠΌ расстояниСм ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ. Π’ пространствС-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, с Π΅Π³ΠΎ Π·Π°Π±Π°Π²Π½ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ΅ΠΉ Минковского, Π½Π°ΠΌ придСтся ΠΏΡ€ΠΈΠ²Ρ‹ΠΊΠ½ΡƒΡ‚ΡŒ ΠΊ мысли, Ρ‡Ρ‚ΠΎ прямая линия являСтся самым Π΄Π»ΠΈΠ½Π½Ρ‹ΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠΌ ΠΌΠ΅ΠΆΠ΄Ρƒ двумя событиями. Π‘Π»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ Π½ΠΈΠΆΠ΅ ΠΏΡ€ΠΈΡ‚Ρ‡Π° ΠΎ ΠšΠ°ΡΡ‚ΠΎΡ€Π΅ ΠΈ ΠŸΠΎΠ»Π»ΡƒΠΊΡΠ΅ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π°Π·ΡŠΡΡΠ½ΠΈΡ‚ΡŒ это ΠΎΠ±ΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ.

Π”Π°Π²Π°ΠΉΡ‚Π΅ прСдставим сСбС, Ρ‡Ρ‚ΠΎ ΠšΠ°ΡΡ‚ΠΎΡ€ остался Π΄ΠΎΠΌΠ°. Π•Π³ΠΎ мировая линия Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Π° ΠΈ тянСтся ΠΎΡ‚ Π΅Π³ΠΎ Π΄Π²Π°Π΄Ρ†Π°Ρ‚ΠΎΠ³ΠΎ дня роТдСния Π΄ΠΎ Π΄Π²Π°Π΄Ρ†Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ дня роТдСния. ΠŸΠΎΠ»Π»ΡƒΠΊΡ, ΠΎΡ‚ΠΏΡ€Π°Π·Π΄Π½ΠΎΠ²Π°Π² свой дСнь роТдСния вмСстС с Π±Ρ€Π°Ρ‚ΠΎΠΌ, Π½Π΅ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎ пускаСтся Π½Π° космичСском ΠΊΠΎΡ€Π°Π±Π»Π΅ Π² ΠΏΡƒΡ‚Π΅ΡˆΠ΅ΡΡ‚Π²ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ для ΠšΠ°ΡΡ‚ΠΎΡ€Π° длится 12 мСсяцСв, двиТСтся со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 1 000 000 000 ΠΊΠΌ/Ρ‡ Π΄ΠΎ ΡƒΠ΄Π°Π»Π΅Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΌΠ΅ΠΆΠ·Π²Π΅Π·Π΄Π½ΠΎΠΌ пространствС ΠΈ возвращаСтся, ΠΏΡ€ΠΈΠ±Ρ‹Π² ΠΊΠ°ΠΊ Ρ€Π°Π· ΠΊ Π΅Π³ΠΎ, ΠšΠ°ΡΡ‚ΠΎΡ€Π°, Π΄Π²Π°Π΄Ρ†Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€Π²ΠΎΠΌΡƒ дню роТдСния. По прСдставлСниям ΠšΠ°ΡΡ‚ΠΎΡ€Π°, ΠŸΠΎΠ»Π»ΡƒΠΊΡ ΠΏΡ€ΠΎΠ»Π΅Ρ‚Π΅Π» 8,8 Ρ‚Ρ€ΠΈΠ»Π»ΠΈΠΎΠ½Π° ΠΊΠΈΠ»ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ². ΠšΠ°ΡΡ‚ΠΎΡ€ использовал врСмя отсутствия своСго Π±Ρ€Π°Ρ‚Π° для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» ΠΌΠ΅ΠΆΠ΄Ρƒ Π½Π°Ρ‡Π°Π»ΠΎΠΌ ΠΈ ΠΊΠΎΠ½Ρ†ΠΎΠΌ ΠΏΡƒΡ‚Π΅ΡˆΠ΅ΡΡ‚Π²ΠΈΡ составляСт 3,30 Ρ‚Ρ€ΠΈΠ»Π»ΠΈΠΎΠ½Π° ΠΊΠΈΠ»ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ². ΠŸΠΎΠ»Π»ΡƒΠΊΡ с этим согласСн, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» являСтся ΠΈΠ½Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠΌ. Однако, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½ Π½Π΅ ΠΏΠΎΠΊΠΈΠ΄Π°Π» космичСский ΠΊΠΎΡ€Π°Π±Π»ΡŒ ΠΈ ΠΏΡƒΡ‚Π΅ΡˆΠ΅ΡΡ‚Π²ΠΎΠ²Π°Π» Π²ΡΠ»Π΅ΠΏΡƒΡŽ, ΠŸΠΎΠ»Π»ΡƒΠΊΡ считаСт, Ρ‡Ρ‚ΠΎ ΠΎΠ½ Π½ΠΈΠ³Π΄Π΅ Π½Π΅ Π±Ρ‹Π», поэтому приписываСт вСсь этот ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Ρ‚Π΅Ρ‡Π΅Π½ΠΈΡŽ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π° Π½Π΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ Π² пространствС. Π’ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… Π΅Π΄ΠΈΠ½ΠΈΡ†Π°Ρ… 3,30 Ρ‚Ρ€ΠΈΠ»Π»ΠΈΠΎΠ½Π° ΠΊΠΈΠ»ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ² свСтового Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ соотвСтствуСт 4,6 мСсяца (рис. 9.8). ΠœΡ‹ Π²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ мировая линия, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ ΠΏΡƒΡ‚Π΅ΡˆΠ΅ΡΡ‚Π²ΠΈΠ΅, ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎΠ΅ ΠŸΠΎΠ»Π»ΡƒΠΊΡΠΎΠΌ ΠΌΠ΅ΠΆΠ΄Ρƒ событиями, ΠΎΡ‚ΠΌΠ΅Ρ‡Π°ΡŽΡ‰ΠΈΠΌΠΈ Π΄Π½ΠΈ роТдСния ΠšΠ°ΡΡ‚ΠΎΡ€Π°, соотвСтствуСт ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρƒ Π±ΠΎΠ»Π΅Π΅ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠΌΡƒ, Ρ‡Π΅ΠΌ прямая линия ΠΌΠ΅ΠΆΠ΄Ρƒ этими двумя днями роТдСния (ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ ΠΌΠΈΡ€ΠΎΠ²ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΠšΠ°ΡΡ‚ΠΎΡ€Π°), Π΄Π°ΠΆΠ΅ нСсмотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ линия, ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ°ΡŽΡ‰Π°Ρ это ΠΏΡƒΡ‚Π΅ΡˆΠ΅ΡΡ‚Π²ΠΈΠ΅, Π² Π½Π°ΡˆΠΈΡ… Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²Ρ‹Ρ… Π³Π»Π°Π·Π°Ρ… выглядит Π΄Π»ΠΈΠ½Π½Π΅Π΅. Π­Ρ‚ΠΎ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅Ρ‚ нашС Π·Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ прямая линия ΠΌΠ΅ΠΆΠ΄Ρƒ событиями соотвСтствуСт Π±ΠΎΠ»Π΅Π΅ Π΄Π»ΠΈΠ½Π½ΠΎΠΌΡƒ (Π² Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ самому Π΄Π»ΠΈΠ½Π½ΠΎΠΌΡƒ) ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρƒ, Ρ‡Π΅ΠΌ нСпрямой ΠΏΡƒΡ‚ΡŒ. Π­Ρ‚ΠΎ Π²Π΅Ρ€Π½ΠΎ ΠΈ Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС. Когда Π²Ρ‹ смотритС Π½Π° Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡƒ Π² пространствС-Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π½Π΅ Π΄Π°Π²Π°ΠΉΡ‚Π΅ Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²Ρ‹ΠΌ прСдставлСниям вас ΠΎΠ΄ΡƒΡ€Π°Ρ‡ΠΈΡ‚ΡŒ.

Рис. 9.8. ΠšΠ°ΡΡ‚ΠΎΡ€ остался Π½Π° Π³ΠΎΠ΄ Π΄ΠΎΠΌΠ°: ΠΎΠ½ повзрослСл Π½Π° Π³ΠΎΠ΄, Π½ΠΎ Π½ΠΈΠΊΡƒΠ΄Π° Π½Π΅ Π΅Π·Π΄ΠΈΠ». Π˜Π½Ρ‚Π΅Ρ€Π²Π°Π» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя событиями, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ½ Π½Π°Π·Ρ‹Π²Π°Π΅Ρ‚ своими днями роТдСния, Ρ€Π°Π²Π΅Π½ 3,30 Ρ‚Ρ€ΠΈΠ»Π»ΠΈΠΎΠ½Π° ΠΊΠΈΠ»ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ² (ΠΎΠ΄Π½ΠΎΠΌΡƒ Π³ΠΎΠ΄Ρƒ). ΠŸΠΎΠ»Π»ΡƒΠΊΡ ΠΎΡ‚Π±Ρ‹Π²Π°Π΅Ρ‚ Π² ΠΏΡƒΡ‚Π΅ΡˆΠ΅ΡΡ‚Π²ΠΈΠ΅ со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Π² 93 ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚Π° ΠΎΡ‚ скорости свСта ΠΈ отправляСтся Π² Ρ‚ΠΎΡ‡ΠΊΡƒ, ΡƒΠ΄Π°Π»Π΅Π½Π½ΡƒΡŽ Π½Π° 8,8 Ρ‚Ρ€ΠΈΠ»Π»ΠΈΠΎΠ½Π° ΠΊΠΈΠ»ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ², возвращаСтся ΠΈ ΠΏΡ€ΠΈΠ±Ρ‹Π²Π°Π΅Ρ‚ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎ ΠΊΠΎ дню роТдСния ΠšΠ°ΡΡ‚ΠΎΡ€Π°. ΠŸΠΎΠ»Π»ΡƒΠΊΡ Π½Π΅ Π΄ΡƒΠΌΠ°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΎΠ½ ΠΊΡƒΠ΄Π°-Ρ‚ΠΎ отлучался, Π½ΠΎ согласСн с ΠšΠ°ΡΡ‚ΠΎΡ€ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» ΠΌΠ΅ΠΆΠ΄Ρƒ Π΅Π³ΠΎ ΠΎΡ‚Π±Ρ‹Ρ‚ΠΈΠ΅ΠΌ ΠΈ ΠΏΡ€ΠΈΠ±Ρ‹Ρ‚ΠΈΠ΅ΠΌ Ρ€Π°Π²Π΅Π½ 3,30 Ρ‚Ρ€ΠΈΠ»Π»ΠΈΠΎΠ½Π°ΠΌ ΠΊΠΈΠ»ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ². Однако ΠΎΠ½ считаСт, Ρ‡Ρ‚ΠΎ, ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΡŽ Π΅Π³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, это Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ‚ 4,6 мСсяца.