Π§ΠΈΡ‚Π°ΠΉΡ‚Π΅ ΠΊΠ½ΠΈΠ³ΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ Π½Π° Bookidrom.ru! БСсплатныС ΠΊΠ½ΠΈΠ³ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΊΠ»ΠΈΠΊΠ΅

Π§ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΠ½Π»Π°ΠΉΠ½ Β«ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°. Π£Ρ‚Ρ€Π°Ρ‚Π° опрСдСлСнности.Β». Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†Π° 47

Автор ΠœΠΎΡ€ΠΈΡ Клайн

(dβˆ™ β€” ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ΅ ΠΡŒΡŽΡ‚ΠΎΠ½ΠΎΠΌ). Π˜Ρ‚Π°ΠΊ, dβˆ™ β€” производная ΠΎΡ‚ d = 4,9t2 ΠΏΡ€ΠΈ t = 4.

ΠŸΡ€ΠΎΡ‚ΠΈΠ² ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π€Π΅Ρ€ΠΌΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄Π° вычислСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΠ·Ρ€Π°Π·ΠΈΡ‚ΡŒ, ΡƒΠΊΠ°Π·Π°Π², Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ h Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Π»ΠΈΡ‡Π½ΠΎ ΠΎΡ‚ нуля, ΠΈΠ±ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΈΡ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ, ΠΊΠ°ΠΊ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ числитСля ΠΈ знамСнатСля Π½Π° h, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€ΠΈ h, ΠΎΡ‚Π»ΠΈΡ‡Π½ΠΎΠΌ ΠΎΡ‚ нуля. Но Ρ‚ΠΎΠ³Π΄Π° ΠΈ равСнство (3) справСдливо Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€ΠΈ h, ΠΎΡ‚Π»ΠΈΡ‡Π½ΠΎΠΌ ΠΎΡ‚ нуля. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΌΡ‹ Π½Π΅ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ Π² (3) Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ h Ρ€Π°Π²Π½Ρ‹ΠΌ Π½ΡƒΠ»ΡŽ ΠΈ Π΄Π΅Π»Π°Ρ‚ΡŒ ΠΈΠ· этого прСдполоТСния ΠΊΠ°ΠΊΠΈΠ΅ Π±Ρ‹ Ρ‚ΠΎ Π½ΠΈ Π±Ρ‹Π»ΠΎ Π²Ρ‹Π²ΠΎΠ΄Ρ‹. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π² случаС Ρ‚Π°ΠΊΠΎΠΉ простой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΊΠ°ΠΊ d = 4,9t2, ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ (2) послС сокращСния ΠΏΡ€Π°Π²ΠΎΠΉ части Π½Π° h ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΡ‚ Π² ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ (3). Π’ случаС ΠΆΠ΅ Π±ΠΎΠ»Π΅Π΅ слоТных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π°ΠΌ ΠΏΡ€ΠΈΡˆΠ»ΠΎΡΡŒ Π±Ρ‹ ΠΈΠΌΠ΅Ρ‚ΡŒ Π΄Π΅Π»ΠΎ с Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ Ρ‚ΠΈΠΏΠ° (2). ΠŸΡ€ΠΈ h = 0 правая Ρ‡Π°ΡΡ‚ΡŒ (2), Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰Π°Ρ ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ срСднСй скорости k/h, обращаСтся Π² Π½Π΅ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡ‚ΡŒ 0/0.

Π€Π΅Ρ€ΠΌΠ° Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ занимался обоснованиСм своСго ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, ΠΈ, хотя ΠΎΠ½ ΠΏΠΎ ΠΏΡ€Π°Π²Ρƒ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π½Π°Π·Π²Π°Π½ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· создатСлСй матСматичСского Π°Π½Π°Π»ΠΈΠ·Π°, Π΅ΠΌΡƒ Π½Π΅ ΡƒΠ΄Π°Π»ΠΎΡΡŒ ΠΏΡ€ΠΎΠ΄Π²ΠΈΠ½ΡƒΡ‚ΡŒΡΡ здСсь особСнно Π΄Π°Π»Π΅ΠΊΠΎ. Он Π±Ρ‹Π» достаточно остороТСн, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ‹Ρ‚Π°Ρ‚ΡŒΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ±Ρ‰ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹, Ссли сознавал, Ρ‡Ρ‚ΠΎ какая-Π»ΠΈΠ±ΠΎ идСя Π½Π΅ обоснована ΠΈΠΌ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ.{77} Π€Π΅Ρ€ΠΌΠ° Π΄ΠΎΠ²ΠΎΠ»ΡŒΡΡ‚Π²ΠΎΠ²Π°Π»ΡΡ Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ» ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ смог Π΄Π°Ρ‚ΡŒ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΡŽ, ΠΈ надСялся, Ρ‡Ρ‚ΠΎ ΠΊΠΎΠ³Π΄Π°-Π½ΠΈΠ±ΡƒΠ΄ΡŒ удастся Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎΠ»Π½ΠΎΠ΅ гСомСтричСскоС обоснованиС ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°.

Π’Ρ‚ΠΎΡ€ΠΎΠ΅ понятиС матСматичСского Π°Π½Π°Π»ΠΈΠ·Π°, Π΄ΠΎΡΡ‚Π°Π²ΠΈΠ²ΡˆΠ΅Π΅ Π½Π΅ΠΌΠ°Π»ΠΎ Ρ…Π»ΠΎΠΏΠΎΡ‚ Π΅Π³ΠΎ создатСлям, β€” (ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ) ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» β€” встрСчаСтся, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΏΡ€ΠΈ вычислСнии ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ Ρ„ΠΈΠ³ΡƒΡ€, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ†Π΅Π»ΠΈΠΊΠΎΠΌ ΠΈΠ»ΠΈ частично ΠΊΡ€ΠΈΠ²Ρ‹ΠΌΠΈ линиями, объСмом Ρ‚Π΅Π», ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΈΠ·ΠΎΠ³Π½ΡƒΡ‚Ρ‹ΠΌΠΈ повСрхностями (Π½Π΅ плоскостями!), Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² тяТСсти Ρ‚Π΅Π» Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΡΡ‚ΡŒ, ΠΊΠ°ΠΊΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° трудности Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ использовании понятия ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°, рассмотрим вычислСниС ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ.

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, трСбуСтся Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ DEFG (рис. 6.1), ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΉ Π΄ΡƒΠ³ΠΎΠΉ FG ΠΊΡ€ΠΈΠ²ΠΎΠΉ, Π·Π°Π΄Π°Π²Π°Π΅ΠΌΠΎΠΉ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ y = x2, ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠΌ DE оси x ΠΈ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°ΠΌΠΈ DG ΠΈ EF. Π’ этом случаС, ΠΊΠ°ΠΊ ΠΈ ΠΏΡ€ΠΈ вычислСнии ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, ΠΌΡ‹ Ρ…ΠΎΡ‚ΠΈΠΌ Π½Π°ΠΉΡ‚ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€Π΅ΡΡƒΡŽΡ‰ΡƒΡŽ нас Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ всС Π±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΉ. НСчто ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ΅ прСдприняли ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ XVII Π².

Рис. 6.1. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ трапСция DEFG.

РазобьСм ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ DE Π½Π° Ρ‚Ρ€ΠΈ Ρ€Π°Π²Π½Ρ‹Π΅ части (каТдая Π΄Π»ΠΈΠ½ΠΎΠΉ h) ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ разбиСния Ρ‡Π΅Ρ€Π΅Π· D1, D2, ΠΈ D3 (Ρ‚ΠΎΡ‡ΠΊΠ° D3 совпадаСт с Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ E, рис. 6.2). ΠŸΡƒΡΡ‚ΡŒ y1, y2, ΠΈ y3 β€” ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… разбиСния. Π’ΠΎΠ³Π΄Π° y1h, y2h, ΠΈ y3h β€” ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π΅Ρ… ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ², ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π½Π° рис. 6.2, Π°

y1h + y2h + y3h (5)

β€” ΡΡƒΠΌΠΌΠ° ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ этих Ρ‚Ρ€Π΅Ρ… ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ², ΡΠ²Π»ΡΡŽΡ‰Π°ΡΡΡ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΊ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ DEFG.

Рис. 6.2. ВычислСниС ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ (основаниС DE Ρ€Π°Π·Π±ΠΈΡ‚ΠΎ Π½Π° 3 части).

Π›ΡƒΡ‡ΡˆΠ΅Π΅ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ DEFG ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΈ увСличивая ΠΈΡ… число. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ DE ΠΌΡ‹ Ρ€Π°Π·Π±ΠΈΠ»ΠΈ Π½Π΅ Π½Π° Ρ‚Ρ€ΠΈ, Π° Π½Π° ΡˆΠ΅ΡΡ‚ΡŒ частСй. На рис. 6.3, Π² частности, ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ‚ ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠΌ Ρ€Π°Π·Π±ΠΈΠ΅Π½ΠΈΠΈ со срСдним ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ, ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΌ Π½Π° рис. 6.2: послС разбиСния Π΅Π³ΠΎ Π·Π°ΠΌΠ΅Π½ΡΡŽΡ‚ Π΄Π²Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π·Π° высоту ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΌΡ‹ Π²Ρ‹Π±ΠΈΡ€Π°Π΅ΠΌ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ y Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ разбиСния ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° DE, Π·Π°ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π½Π° рис. 6.3 ΡƒΠΆΠ΅ Π½Π΅ Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² сумму ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ Ρ‚Π΅Ρ… ΡˆΠ΅ΡΡ‚ΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ аппроксимируСтся Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ DEFG. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, сумма

y1h + y2h + y3h + y4h + y5h + y6h (6)

(Π³Π΄Π΅ Π½ΠΎΠ²ΠΎΠ΅ h Π² Π΄Π²Π° Ρ€Π°Π·Π° мСньшС ΠΏΡ€Π΅ΠΆΠ½Π΅Π³ΠΎ) Π΄Π°Π΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ DEFG, Ρ‡Π΅ΠΌ сумма (5).

Рис. 6.3. ВычислСниС ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ DEFG (основаниС DE Ρ€Π°Π·Π±ΠΈΡ‚ΠΎ Π½Π° 6 частСй)

ΠžΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ примСняСмого Π½Π°ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π² ΠΎΠ±Ρ‰Π΅ΠΌ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅. Π Π°Π·Π΄Π΅Π»ΠΈΠ² ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ DE Π½Π° n частСй, ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π±Ρ‹ n ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ², ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΡˆΠΈΡ€ΠΈΠ½ΠΎΠΉ h. ΠŸΡƒΡΡ‚ΡŒ y1, y2, …, yn β€” ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… разбиСния (ΠΌΠ½ΠΎΠ³ΠΎΡ‚ΠΎΡ‡ΠΈΠ΅ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ всС ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ y Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… разбиСния). Π‘ΡƒΠΌΠΌΠ° ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ n ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² Ρ€Π°Π²Π½Π°

y1h + y2h + y3h + β€¦ + ynh (7)

(ΠΈ Π½Π° этот Ρ€Π°Π· ΠΌΠ½ΠΎΠ³ΠΎΡ‚ΠΎΡ‡ΠΈΠ΅ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π² сумму входят всС ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ). ΠœΡ‹ ΡƒΠΆΠ΅ Π³ΠΎΠ²ΠΎΡ€ΠΈΠ»ΠΈ ΠΎ Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊ влияСт Π½Π° Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ приблиТСния Ρ€Π°Π·Π±ΠΈΠ΅Π½ΠΈΠ΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° DE Π½Π° всС Π±ΠΎΠ»Π΅Π΅ ΠΌΠ΅Π»ΠΊΠΈΠ΅ части. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ DEFG, Π·Π°Π΄Π°Π²Π°Π΅ΠΌΠΎΠ΅ суммой (7), с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ n становится всС Π±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌ. Но ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ возрастания n ΡƒΠ±Ρ‹Π²Π°Π΅Ρ‚ h, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ h = DE/n. Π˜Ρ‚Π°ΠΊ, ΠΌΡ‹ установили, Ρ‡Ρ‚ΠΎ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°ΠΌΠΈ прямых (Π² нашСм случаС β€” ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ), ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π΄ΠΎΠ±ΠΈΡ‚ΡŒΡΡ всС Π±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ вычислСния ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠΉ.

Π˜Π½Ρ‚ΡƒΠΈΡ‚ΠΈΠ²Π½ΠΎ ясно, Ρ‡Ρ‚ΠΎ, Ρ‡Π΅ΠΌ большС число ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ², Ρ‚Π΅ΠΌ Ρ‚ΠΎΡ‡Π½Π΅Π΅ сумма ΠΈΡ… ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ аппроксимируСт ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹. Но Ссли ΠΎΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒΡΡ Π½Π° 50 ΠΈΠ»ΠΈ Π½Π° 100 ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°Ρ…, Ρ‚ΠΎ сумма ΠΈΡ… ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ Π΅Ρ‰Π΅ Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ Π² точности Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ аппроксимируСмой Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, ΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°ΠΌ XVII Π²., ΠΏΡ€ΠΈΠ΄ΡƒΠΌΠ°Π²ΡˆΠΈΠΌ этот ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Π²Ρ‹Ρ‡ΠΈΡΠ»Π΅Π½ΠΈΡŽ ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ, ΠΏΡ€ΠΈΡˆΠ»ΠΎ Π² Π³ΠΎΠ»ΠΎΠ²Ρƒ ΡƒΡΡ‚Ρ€Π΅ΠΌΠΈΡ‚ΡŒ n ΠΊ бСсконСчности. ΠŸΡ€Π°Π²Π΄Π°, Π² Ρ‚ΠΎ врСмя Π΅Ρ‰Π΅ Π½Π΅ Π±Ρ‹Π»ΠΎ Π²ΠΏΠΎΠ»Π½Π΅ ясно, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ. МоТно Π»ΠΈ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ числом, ΠΈ Ссли Π΄Π°, Ρ‚ΠΎ ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ арифмСтичСскиС дСйствия Π½Π°Π΄ этим числом? ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ² выраТСния (7) для суммы ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ n ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΈ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ² Π² Π½ΠΈΡ… Ρ‡Π»Π΅Π½Ρ‹ Π²ΠΈΠ΄Π° 1/n ΠΈ 1/n2, Π€Π΅Ρ€ΠΌΠ° отбросил ΠΈΡ… Π½Π° Ρ‚ΠΎΠΌ основании, Ρ‡Ρ‚ΠΎ, ΠΊΠΎΠ³Π΄Π° n обращаСтся Π² Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ, эти Ρ‡Π»Π΅Π½Ρ‹ ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅ΠΆΠΈΠΌΠΎ ΠΌΠ°Π»Ρ‹. Как ΠΈ ΠΏΡ€ΠΈ Π²Ρ‹Π²ΠΎΠ΄Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, Π€Π΅Ρ€ΠΌΠ° ΠΏΠΎΠ»Π°Π³Π°Π», Ρ‡Ρ‚ΠΎ строго Π΅Π³ΠΎ идСю удастся Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ скорСС всСго с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° исчСрпывания, Π²Π²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ Евдоксом (довольно ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΈ вСсьма нСпростой гСомСтричСский ΠΌΠ΅Ρ‚ΠΎΠ΄, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ искусно пользовался АрхимСд).

Из Ρ€Π°Π½Π½ΠΈΡ… ΠΏΠΎΠΏΡ‹Ρ‚ΠΎΠΊ вычислСния ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ ΠΈ объСмов с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° Ρ€Π°Π±ΠΎΡ‚Π° Π‘ΠΎΠ½Π°Π²Π΅Π½Ρ‚ΡƒΡ€Ρ‹ ΠšΠ°Π²Π°Π»ΡŒΠ΅Ρ€ΠΈ заслуТиваСт внимания ΠΏΠΎ Π΄Π²ΡƒΠΌ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π°ΠΌ: Π²ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, ΠΎΠ½Π° ΠΎΠΊΠ°Π·Π°Π»Π° большоС влияниС Π½Π° соврСмСнников ΠšΠ°Π²Π°Π»ΡŒΠ΅Ρ€ΠΈ ΠΈ Π½Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠ² ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΠΉ ΠΈ, Π²ΠΎ-Π²Ρ‚ΠΎΡ€Ρ‹Ρ…, довольно Ρ‚ΠΎΡ‡Π½ΠΎ ΠΎΡ‚Ρ€Π°ΠΆΠ°Π»Π° Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹Π΅ особСнности Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ для Ρ‚ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ матСматичСского ΠΌΡ‹ΡˆΠ»Π΅Π½ΠΈΡ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ сСгодня ΠΌΠΎΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ Π±Ρ‹ Π½Π°Π·Π²Π°Ρ‚ΡŒ довольно смутным. ΠšΠ°Π²Π°Π»ΡŒΠ΅Ρ€ΠΈ считал, Ρ‡Ρ‚ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, которая выглядит ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Ρ‚Π°ΠΊ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° рис. 6.1, состоит ΠΈΠ· бСсконСчно большого числа элСмСнтов; эти элСмСнты ΠΎΠ½ Π½Π°Π·Ρ‹Π²Π°Π» Π½Π΅Π΄Π΅Π»ΠΈΠΌΡ‹ΠΌΠΈ. Π’ΠΏΠΎΠ»Π½Π΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π΅Π΄Π΅Π»ΠΈΠΌΡ‹ΠΌΠΈ ΠΌΠΎΠ³Π»ΠΈ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ прямых. Π£ самого ΠšΠ°Π²Π°Π»ΡŒΠ΅Ρ€ΠΈ Π½Π΅ Π±Ρ‹Π»ΠΎ ясности ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой Π΅Π³ΠΎ Π½Π΅Π΄Π΅Π»ΠΈΠΌΡ‹Π΅. Он лишь ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π», Ρ‡Ρ‚ΠΎ Ссли ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ Ρ€Π°Π·Π±ΠΈΠ²Π°Ρ‚ΡŒ Π½Π° всС мСньшиС ΠΈ мСньшиС ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° рис. 6.3, Ρ‚ΠΎ Π² ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΌ ΠΈΡ‚ΠΎΠ³Π΅ получатся Π½Π΅Π΄Π΅Π»ΠΈΠΌΡ‹Π΅. Π’ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· своих ΠΊΠ½ΠΈΠ³, Β«Π¨Π΅ΡΡ‚ΡŒ гСомСтричСских ΡƒΠΏΡ€Π°ΠΆΠ½Π΅Π½ΠΈΠΉΒ» (Π•Ρ…Π΅rcitationes geometricae sex, 1647), ΠšΠ°Π²Π°Π»ΡŒΠ΅Ρ€ΠΈ «объяснил», Ρ‡Ρ‚ΠΎ рассматриваСмая Ρ„ΠΈΠ³ΡƒΡ€Π° состоит ΠΈΠ· Π½Π΅Π΄Π΅Π»ΠΈΠΌΡ‹Ρ…, ΠΊΠ°ΠΊ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΎΠΆΠ΅Ρ€Π΅Π»ΡŒΠ΅ β€” ΠΈΠ· бусин, Ρ‚ΠΊΠ°Π½ΡŒ β€” ΠΈΠ· Π½ΠΈΡ‚Π΅ΠΉ ΠΈ ΠΊΠ½ΠΈΠ³Π° β€” ΠΈΠ· страниц. Π ΡƒΠΊΠΎΠ²ΠΎΠ΄ΡΡ‚Π²ΡƒΡΡΡŒ ΡΡ‚ΠΎΠ»ΡŒ нСясным понятиСм, ΠšΠ°Π²Π°Π»ΡŒΠ΅Ρ€ΠΈ Ρ‚Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ научился ΡΡ€Π°Π²Π½ΠΈΠ²Π°Ρ‚ΡŒ Π΄Π²Π΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΈΠ»ΠΈ Π΄Π²Π° объСма ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρƒ двумя сравниваСмыми Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ [38].

ΠšΡ€ΠΈΡ‚ΠΈΠΊΠΎΠ² ΠšΠ°Π²Π°Π»ΡŒΠ΅Ρ€ΠΈ Π΅Π³ΠΎ объяснСния Π½Π΅ удовлСтворяли. Один ΠΈΠ· соврСмСнников ΠšΠ°Π²Π°Π»ΡŒΠ΅Ρ€ΠΈ, ΠŸΠ°ΡƒΠ»ΡŒ Π“ΡƒΠ»ΡŒΠ΄ΠΈΠ½ (1557-1643), ΠΎΠ±Π²ΠΈΠ½ΠΈΠ» Π΅Π³ΠΎ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ ΠΏΡ€Π΅Π΄Π½Π°ΠΌΠ΅Ρ€Π΅Π½Π½ΠΎ суТиваСт Ρ€Π°ΠΌΠΊΠΈ грСчСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, вмСсто Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΡΡ‚ΡŒ Π΅Π΅. А ΠΎΠ΄ΠΈΠ½ ΠΈΠ· соврСмСнных Π½Π°ΠΌ историков Π½Π°ΡƒΠΊΠΈ заявил, Ρ‡Ρ‚ΠΎ Ссли Π±Ρ‹ сущСствовал особый ΠΏΡ€ΠΈΠ· Π·Π° Π½Π΅ΡΡΠ½ΠΎΡΡ‚ΡŒ, Ρ‚ΠΎ названная Ρ€Π°Π±ΠΎΡ‚Π° ΠšΠ°Π²Π°Π»ΡŒΠ΅Ρ€ΠΈ Π±Ρ‹Π»Π° Π±Ρ‹ Ρ‚ΡƒΡ‚ Π²Π½Π΅ всякой ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ†ΠΈΠΈ ΠΈ, бСзусловно, заслуТила Π±Ρ‹ Ρ‚Π°ΠΊΡƒΡŽ Π½Π°Π³Ρ€Π°Π΄Ρƒ. НС имСя возмоТности ΠΎΠ±ΡŠΡΡΠ½ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊ ΠΈΠ· бСсконСчного числа элСмСнтов (Π½Π΅Π΄Π΅Π»ΠΈΠΌΡ‹Ρ…) ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Ρ„ΠΈΠ³ΡƒΡ€Ρƒ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ протяТСнности, ΠšΠ°Π²Π°Π»ΡŒΠ΅Ρ€ΠΈ пытался ΡƒΠΉΡ‚ΠΈ ΠΎΡ‚ ΠΎΡ‚Π²Π΅Ρ‚Π° Π½Π° вопрос, ΠΎΡ‚ΠΊΠ°Π·Ρ‹Π²Π°ΡΡΡŒ Π΄Π°Ρ‚ΡŒ сколько-Π½ΠΈΠ±ΡƒΠ΄ΡŒ Ρ‚ΠΎΡ‡Π½ΡƒΡŽ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΡŽ Π½Π΅Π΄Π΅Π»ΠΈΠΌΡ‹Ρ…. Иногда ΠΎΠ½ Π² довольно Ρ‚ΡƒΠΌΠ°Π½Π½Ρ‹Ρ… выраТСниях Π³ΠΎΠ²ΠΎΡ€ΠΈΠ» ΠΎ бСсконСчной суммС Π»ΠΈΠ½ΠΈΠΉ, Π½Π΅ объясняя явно ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρƒ бСсконСчности. Π’ Π΄Ρ€ΡƒΠ³ΠΈΡ… случаях ΠšΠ°Π²Π°Π»ΡŒΠ΅Ρ€ΠΈ Π½Π°Π·Ρ‹Π²Π°Π» свой ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ прагматичСским ΠΏΡ€ΠΈΠ΅ΠΌΠΎΠΌ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΌ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ слоТный ΠΌΠ΅Ρ‚ΠΎΠ΄ исчСрпывания, ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΠ²ΡˆΠΈΠΉΡΡ Π΄Ρ€Π΅Π²Π½ΠΈΠΌΠΈ Π³Ρ€Π΅ΠΊΠ°ΠΌΠΈ. По ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²Ρƒ ΠšΠ΅ΠΏΠ»Π΅Ρ€Π°, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΌΡƒ Π² Π΅Π³ΠΎ сочинСнии «Новая стСрСомСтрия Π²ΠΈΠ½Π½Ρ‹Ρ… Π±ΠΎΡ‡Π΅ΠΊΒ» (Stereometria doliorum vinariorum, 1616) [39], ΠšΠ°Π²Π°Π»ΡŒΠ΅Ρ€ΠΈ ссылался Π½Π° соврСмСнных Π΅ΠΌΡƒ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ², ΠΎΠ±Ρ€Π°Ρ‰Π°Π²ΡˆΠΈΡ…ΡΡ с понятиями Π΅Ρ‰Π΅ Π±ΠΎΠ»Π΅Π΅ свободно, Ρ‡Π΅ΠΌ ΠΎΠ½ сам. Π­Ρ‚ΠΈ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€Ρ‹, Π³ΠΎΠ²ΠΎΡ€ΠΈΠ» ΠΎΠ½, вычисляя ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ, ΠΏΠΎΠ΄Ρ€Π°ΠΆΠ°ΡŽΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ АрхимСда, Π½ΠΎ ΠΈΠΌ Π½Π΅ удаСтся Π½Π°ΠΉΡ‚ΠΈ Ρ‚Π΅Ρ… ΠΏΠΎΠ»Π½Ρ‹Ρ… Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ позволяли Π²Π΅Π»ΠΈΠΊΠΎΠΌΡƒ Π³Ρ€Π΅ΠΊΡƒ ΠΏΡ€ΠΈΠ΄Π°Ρ‚ΡŒ своим Ρ€Π°Π±ΠΎΡ‚Π°ΠΌ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡƒΡŽ ΡΡ‚Ρ€ΠΎΠ³ΠΎΡΡ‚ΡŒ. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€Ρ‹, ΠΎ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… шла Ρ€Π΅Ρ‡ΡŒ, Π±Ρ‹Π»ΠΈ Π΄ΠΎΠ²ΠΎΠ»ΡŒΠ½Ρ‹ своими вычислСниями, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ‚Π΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΊ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ΠΌ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ. Встав, ΠΏΠΎ сущСству, Π½Π° Ρ‚Ρƒ ΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΡƒ зрСния, ΠšΠ°Π²Π°Π»ΡŒΠ΅Ρ€ΠΈ счСл, Ρ‡Ρ‚ΠΎ ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π΅Π΄Π΅Π»ΠΈΠΌΡ‹Ρ… ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ Π½ΠΎΠ²Ρ‹ΠΌ открытиям; ΠΎΠ΄Π½Π°ΠΊΠΎ, ΠΏΠΎΠ»ΡŒΠ·ΡƒΡΡΡŒ этим ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ, ΠΎΡ‚Π½ΡŽΠ΄ΡŒ Π½Π΅ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ, Π±ΡƒΠ΄Ρ‚ΠΎ гСомСтричСская Ρ„ΠΈΠ³ΡƒΡ€Π° Π² самом Π΄Π΅Π»Π΅ состоит ΠΈΠ· бСсконСчно большого числа Β«Π½Π΅Π΄Π΅Π»ΠΈΠΌΡ‹Ρ…Β» элСмСнтов. ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½ лишь для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρƒ площадями ΠΈΠ»ΠΈ ΠΌΠ΅ΠΆΠ΄Ρƒ объСмами, Π° эти ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΡΠΎΡ…Ρ€Π°Π½ΡΡŽΡ‚ свою Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ нСзависимо ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠΎΠ³ΠΎ мнСния придСрТиваСтся Ρ‚ΠΎΡ‚ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ элСмСнтов, ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Ρ„ΠΈΠ³ΡƒΡ€Ρƒ. Π’ качСствС послСднСго ΠΊΠΎΠ½Ρ‚Ρ€Π΄ΠΎΠ²ΠΎΠ΄Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ² Π²ΠΎΠ·Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ своих ΠΊΡ€ΠΈΡ‚ΠΈΠΊΠΎΠ² ΠšΠ°Π²Π°Π»ΡŒΠ΅Ρ€ΠΈ ΡƒΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ относятся ΠΊ вСдСнию философии ΠΈ ΠΏΠΎΡ‚ΠΎΠΌΡƒ нСсущСствСнны Π² практичСской Ρ€Π°Π±ΠΎΡ‚Π΅ с Ρ„ΠΈΠ³ΡƒΡ€Π°ΠΌΠΈ ΠΈ Ρ‚Π΅Π»Π°ΠΌΠΈ. О строгости, Π·Π°ΠΌΠ΅Ρ‚ΠΈΠ» ΠΎΠ½, пристало Π·Π°Π±ΠΎΡ‚ΠΈΡ‚ΡŒΡΡ философии β€” Π½ΠΎ Π½Π΅ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ.