Π§ΠΈΡ‚Π°ΠΉΡ‚Π΅ ΠΊΠ½ΠΈΠ³ΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ Π½Π° Bookidrom.ru! БСсплатныС ΠΊΠ½ΠΈΠ³ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΊΠ»ΠΈΠΊΠ΅

Π§ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΠ½Π»Π°ΠΉΠ½ Β«ΠŸΠ°ΡƒΡ‚ΠΈΠ½Π° ΠΆΠΈΠ·Π½ΠΈ. НовоС Π½Π°ΡƒΡ‡Π½ΠΎΠ΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΆΠΈΠ²Ρ‹Ρ… систСм». Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†Π° 26

Автор ΠšΠ°ΠΏΡ€Π° Π€Ρ€ΠΈΡ‚ΡŒΠΎΡ„

ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚Π΅Π»ΠΈ мСханистичСской Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ Π°Ρ‚Π°ΠΊΠΎΠ²Π°Π»ΠΈ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρƒ Π“Π°ΠΉΠΈ ΠΊΠ°ΠΊ Ρ‚Π΅Π»Π΅ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡŽ, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ Π½Π΅ ΠΌΠΎΠ³Π»ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊ Тизнь Π½Π° Π—Π΅ΠΌΠ»Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ ΠΈ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ условия для своСго собствСнного сущСствования, Π½Π΅ обладая сознаниСм ΠΈ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊ Ρ†Π΅Π»Π΅ΠΏΠΎΠ»Π°Π³Π°Π½ΠΈΡŽ. «НС проводятся Π»ΠΈ собрания ΠΊΠΎΠΌΠΈΡ‚Π΅Ρ‚ΠΎΠ² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… биологичСских Π²ΠΈΠ΄ΠΎΠ², Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ±ΡΡƒΠ΄ΠΈΡ‚ΡŒ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ Π½Π° Π±ΡƒΠ΄ΡƒΡ‰ΠΈΠΉ Π³ΠΎΠ΄?Β» β€” со Π·Π»ΠΎΡ€Π°Π΄Π½Ρ‹ΠΌ ΡŽΠΌΠΎΡ€ΠΎΠΌ Π²ΠΎΠΏΡ€ΠΎΡˆΠ°Π»ΠΈ эти ΠΊΡ€ΠΈΡ‚ΠΈΠΊΠΈ70.

Π›Π°Π²Π»ΠΎΠΊ ΠΎΡ‚Π²Π΅Ρ‚ΠΈΠ» Π½Π° ΠΊΡ€ΠΈΡ‚ΠΈΠΊΡƒ Π½Π΅Π²ΠΈΠ½Π½ΠΎΠΉ матСматичСской модСлью ΠΏΠΎΠ΄ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ΠΌ Β«ΠœΠΈΡ€ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊΒ». Она прСдставляСт вСсьма ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½Π½ΡƒΡŽ схСму Π“Π°ΠΉΠΈ, ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ становится ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎ понятно, Ρ‡Ρ‚ΠΎ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ β€” это Π²Π½Π΅Π·Π°ΠΏΠ½ΠΎ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰Π΅Π΅ свойство систСмы, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ проявляСтся автоматичСски Π² отсутствиС ΠΊΠ°ΠΊΠΎΠ³ΠΎ Π±Ρ‹ Ρ‚ΠΎ Π½ΠΈ Π±Ρ‹Π»ΠΎ Ρ†Π΅Π»Π΅Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ дСйствия, ΠΊΠ°ΠΊ слСдствиС наличия ΠΏΠ΅Ρ‚Π΅Π»ΡŒ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ связи ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ ΠΏΠ»Π°Π½Π΅Ρ‚Ρ‹ ΠΈ ΠΈΡ… ΠΎΠΊΡ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ΠΌ71.

Β«ΠœΠΈΡ€ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊΒ» β€” это ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Π°Ρ модСль ΠΏΠ»Π°Π½Π΅Ρ‚Ρ‹, согрСваСмой солнцСм с постоянно Π½Π°Ρ€Π°ΡΡ‚Π°ΡŽΡ‰ΠΈΠΌ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅ΠΏΠ»Π° ΠΈ насСлСнной Ρ‚ΠΎΠ»ΡŒΠΊΠΎ двумя Π²ΠΈΠ΄Π°ΠΌΠΈ β€” Ρ‡Π΅Ρ€Π½Ρ‹ΠΌΠΈ ΠΈ Π±Π΅Π»Ρ‹ΠΌΠΈ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠ°ΠΌΠΈ. Π‘Π΅ΠΌΠ΅Π½Π° этих ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ рассСяны ΠΏΠΎ всСй ΠΏΠ»Π°Π½Π΅Ρ‚Π΅, ΠΏΠΎΡ‡Π²Π° Π²ΡΡŽΠ΄Ρƒ Π²Π»Π°ΠΆΠ½Π° ΠΈ ΠΏΠ»ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½Π°, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠΈ ΠΌΠΎΠ³ΡƒΡ‚ расти лишь Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅.

Π›Π°Π²Π»ΠΎΠΊ Π²Π²Π΅Π» матСматичСскиС уравнСния, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ всСм этим условиям, Π² качСствС Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ Π²Ρ‹Π±Ρ€Π°Π» Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ замСрзания β€” ΠΈ запустил модСль Π½Π° ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π΅. Β«ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Ρ‚ Π»ΠΈ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΡ экосистСмы ΠΌΠΈΡ€Π° ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ ΠΊ саморСгуляции ΠΊΠ»ΠΈΠΌΠ°Ρ‚Π°?Β» β€” Ρ‚Π°ΠΊΠΎΠ² Π±Ρ‹Π» Ρ€Π΅ΡˆΠ°ΡŽΡ‰ΠΈΠΉ вопрос, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΠ½ Π·Π°Π΄Π°Π» сам сСбС.

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ оказались Π²ΠΏΠ΅Ρ‡Π°Ρ‚Π»ΡΡŽΡ‰ΠΈΠΌΠΈ. ΠŸΠ»Π°Π½Π΅Ρ‚Π° постСпСнно разогрСваСтся, ΠΈ Π² ΠΊΠ°ΠΊΠΎΠΉ-Ρ‚ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚ экватор становится достаточно Ρ‚Π΅ΠΏΠ»Ρ‹ΠΌ для поддСрТания ΠΆΠΈΠ·Π½ΠΈ растСний. ΠŸΠ΅Ρ€Π²Ρ‹ΠΌΠΈ ΠΏΠΎΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‡Π΅Ρ€Π½Ρ‹Π΅ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½ΠΈ ΠΏΠΎΠ³Π»ΠΎΡ‰Π°ΡŽΡ‚ Ρ‚Π΅ΠΏΠ»ΠΎ Π»ΡƒΡ‡ΡˆΠ΅ Π±Π΅Π»Ρ‹Ρ… ΠΈ поэтому Π±ΠΎΠ»Π΅Π΅ приспособлСны ΠΊ Π²Ρ‹ΠΆΠΈΠ²Π°Π½ΠΈΡŽ ΠΈ Π²ΠΎΡΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ. Π˜Ρ‚Π°ΠΊ, Π² ΠΏΠ΅Ρ€Π²ΠΎΠΉ Ρ„Π°Π·Π΅ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ Π² ΠΌΠΈΡ€Π΅ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ появляСтся пояс Ρ‡Π΅Ρ€Π½Ρ‹Ρ… ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ, распрСдСлСнных вдоль экватора (рис. 5–5).



Рис. 5–5. Π§Π΅Ρ‚Ρ‹Ρ€Π΅ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Ρ„Π°Π·Ρ‹ ΠΌΠΈΡ€Π° ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ

По ΠΌΠ΅Ρ€Π΅ дальнСйшСго ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π½Π° ΠΏΠ»Π°Π½Π΅Ρ‚Π΅ экватор становится слишком ΠΆΠ°Ρ€ΠΊΠΈΠΌ для выТивания Ρ‡Π΅Ρ€Π½Ρ‹Ρ… ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ, ΠΈ ΠΎΠ½ΠΈ Π½Π°Ρ‡ΠΈΠ½Π°ΡŽΡ‚ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΡŽ субтропичСских Π·ΠΎΠ½. Π’ это ΠΆΠ΅ врСмя Π² Ρ€Π°ΠΉΠΎΠ½Π΅ экватора ΠΏΠΎΡΠ²Π»ΡΡŽΡ‚ΡΡ Π±Π΅Π»Ρ‹Π΅ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠΈ. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½ΠΈ Π±Π΅Π»Ρ‹Π΅, ΠΎΠ½ΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‚ Ρ‚Π΅ΠΏΠ»ΠΎ ΠΈ ΠΎΡ…Π»Π°ΠΆΠ΄Π°ΡŽΡ‚ΡΡ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ ΠΈΡ… Π²Ρ‹ΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡ‚ΡŒ Π² ΠŸΠ΅Ρ€Π΅Π³Ρ€Π΅Ρ‚Ρ‹Ρ… Π·ΠΎΠ½Π°Ρ… ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ‡Π΅Ρ€Π½Ρ‹ΠΌΠΈ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠ°ΠΌΠΈ. Π˜Ρ‚Π°ΠΊ, Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ Ρ„Π°Π·Π΅ вдоль экватора Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ пояс Π±Π΅Π»Ρ‹Ρ… ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ, Π° субтропичСскиС Π·ΠΎΠ½Ρ‹ ΠΈ области ΡƒΠΌΠ΅Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠ»ΠΈΠΌΠ°Ρ‚Π° Π·Π°ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ Ρ‡Π΅Ρ€Π½Ρ‹ΠΌΠΈ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠ°ΠΌΠΈ; Π²Π±Π»ΠΈΠ·ΠΈ полюсов Π΅Ρ‰Π΅ слишком Ρ…ΠΎΠ»ΠΎΠ΄Π½ΠΎ для любого Π²ΠΈΠ΄Π° ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ.

Π‘ΠΎΠ»Π½Ρ†Π΅ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅Ρ‚ Π³Ρ€Π΅Ρ‚ΡŒ с Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰Π΅ΠΉ ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΈ Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Тизнь Π½Π° экваторС Π²Ρ‹ΠΌΠΈΡ€Π°Π΅Ρ‚ β€” Ρ‚Π°ΠΌ становится слишком ΠΆΠ°Ρ€ΠΊΠΎ Π΄Π°ΠΆΠ΅ для Π±Π΅Π»Ρ‹Ρ… ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ. Π’Π΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ Π±Π΅Π»Ρ‹Π΅ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠΈ смСнили Ρ‡Π΅Ρ€Π½Ρ‹Π΅ Π² ΡƒΠΌΠ΅Ρ€Π΅Π½Π½Ρ‹Ρ… Π·ΠΎΠ½Π°Ρ…, Π° Ρ‡Π΅Ρ€Π½Ρ‹Π΅ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠΈ Π½Π°Ρ‡ΠΈΠ½Π°ΡŽΡ‚ ΠΏΠΎΡΠ²Π»ΡΡ‚ΡŒΡΡ Π²ΠΎΠΊΡ€ΡƒΠ³ полюсов. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π² Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ Ρ„Π°Π·Π΅ экватор оказываСтся бСсплодным, ΡƒΠΌΠ΅Ρ€Π΅Π½Π½Ρ‹Π΅ Π·ΠΎΠ½Ρ‹ засСлСны Π±Π΅Π»Ρ‹ΠΌΠΈ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠ°ΠΌΠΈ, Π²ΠΎΠΊΡ€ΡƒΠ³ полярных Π·ΠΎΠ½ тСснятся Ρ‡Π΅Ρ€Π½Ρ‹Π΅ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠΈ, ΠΈ лишь Π½Π° самых Π²Π΅Ρ€Ρ…ΡƒΡˆΠΊΠ°Ρ… полюсов Π½Π΅ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΆΠΈΠ·Π½ΠΈ. Π’ послСднСй Ρ„Π°Π·Π΅, Π½Π°ΠΊΠΎΠ½Π΅Ρ†, ΠΎΠ±ΡˆΠΈΡ€Π½Ρ‹Π΅ Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ Π²ΠΎΠΊΡ€ΡƒΠ³ экватора ΠΈ субтропичСскиС Π·ΠΎΠ½Ρ‹ ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ слишком горячими для выТивания ΠΎΠ±ΠΎΠΈΡ… Π²ΠΈΠ΄ΠΎΠ², ΠΈ ΠΌΡ‹ Π²ΠΈΠ΄ΠΈΠΌ Π±Π΅Π»Ρ‹Π΅ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠΈ Π² ΡƒΠΌΠ΅Ρ€Π΅Π½Π½Ρ‹Ρ… Π·ΠΎΠ½Π°Ρ…, Π° Ρ‡Π΅Ρ€Π½Ρ‹Π΅ β€” Π½Π° ΠΏΠΎΠ»ΡŽΡΠ°Ρ…. ПослС этого Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠ»Π°Π½Π΅Ρ‚Ρ‹ становится слишком ΠΆΠ°Ρ€ΠΊΠΎ для выТивания ΠΎΠ±ΠΎΠΈΡ… Π²ΠΈΠ΄ΠΎΠ² ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ, ΠΈ Тизнь Π½Π° Π½Π΅ΠΉ Π²Ρ‹ΠΌΠΈΡ€Π°Π΅Ρ‚.

Π’Π°ΠΊΠΎΠ²Π° основная Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° систСмы ΠΌΠΈΡ€Π° ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ. Π’Π°ΠΆΠ½Π΅ΠΉΡˆΠ΅Π΅ свойство ΠΌΠΎΠ΄Π΅Π»ΠΈ, обусловлСнноС саморСгулированиСм, Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Ρ‡Π΅Ρ€Π½Ρ‹Π΅ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠΈ, поглощая Ρ‚Π΅ΠΏΠ»ΠΎ, ΡΠΎΠ³Ρ€Π΅Π²Π°ΡŽΡ‚ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ сСбя, Π½ΠΎ ΠΈ саму ΠΏΠ»Π°Π½Π΅Ρ‚Ρƒ. ΠŸΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌ ΠΆΠ΅ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΊΠΎΠ³Π΄Π° Π±Π΅Π»Ρ‹Π΅ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‚ Ρ‚Π΅ΠΏΠ»ΠΎ ΠΈ ΠΎΡ…Π»Π°ΠΆΠ΄Π°ΡŽΡ‚ΡΡ, ΠΎΠ½ΠΈ ΠΎΡ…Π»Π°ΠΆΠ΄Π°ΡŽΡ‚ ΠΈ ΠΏΠ»Π°Π½Π΅Ρ‚Ρƒ. Π‘Ρ‚Π°Π»ΠΎ Π±Ρ‹Ρ‚ΡŒ, Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ всСй ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ ΠΌΠΈΡ€Π° ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ Ρ‚Π΅ΠΏΠ»ΠΎ поглощаСтся ΠΈ отраТаСтся Π² зависимости ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠΎΠΉ Π²ΠΈΠ΄ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΠ΅Ρ‚.

Когда Π›Π°Π²Π»ΠΎΠΊ ΠΈΠ·ΠΎΠ±Ρ€Π°Π·ΠΈΠ» Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ измСнСния Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΏΠ»Π°Π½Π΅Ρ‚Ρ‹ Π² Ρ…ΠΎΠ΄Π΅ Π΅Π΅ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ, ΠΎΠ½ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ» ΠΏΠΎΡ€Π°Π·ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚: Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° ΠΏΠ»Π°Π½Π΅Ρ‚Ρ‹ поддСрТиваСтся постоянной Π½Π° протяТСнии всСх Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… Ρ„Π°Π· (рис. 5–6). Когда солнцС ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΡ…Π»Π°Π΄Π½ΠΎ, ΠΌΠΈΡ€ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ свою Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ Ρ‡Π΅Ρ€Π΅Π· ΠΏΠΎΠ³Π»ΠΎΡ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΏΠ»Π° Ρ‡Π΅Ρ€Π½Ρ‹ΠΌΠΈ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠ°ΠΌΠΈ; ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ Ρ‚ΠΎΠ³ΠΎ ΠΊΠ°ΠΊ солнцС нагрСваСтся, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° постСпСнно сниТаСтся ΠΈΠ·-Π·Π° ΠΏΡ€ΠΎΠ³Ρ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ прСобладания Π±Π΅Π»Ρ‹Ρ… ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ, ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΡ… Ρ‚Π΅ΠΏΠ»ΠΎ. Π’Π°ΠΊ ΠΌΠΈΡ€ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ, Π±Π΅Π· всякого прСдвидСния ΠΈ планирования, Β«Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΠ΅Ρ‚ свою Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ Π² ΠΎΠ±ΡˆΠΈΡ€Π½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ лишь с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π°Π½Ρ†Π° ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊΒ»72.

ΠŸΠ΅Ρ‚Π»ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ связи, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‚ влияниС ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды Π½Π° рост ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, влияСт Π½Π° ΠΎΠΊΡ€ΡƒΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΡΡƒΡ‰Π΅ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠœΠΈΡ€Π° ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ. Если этот Ρ†ΠΈΠΊΠ» Ρ€Π°Π·ΠΎΡ€Π²Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠΈ пСрСстали Π²Π»ΠΈΡΡ‚ΡŒ Π½Π° ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΡƒΡŽ срСду, популяции ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ Π½Π°Ρ‡ΠΈΠ½Π°ΡŽΡ‚ сильно ΠΈ бСспорядочно ΠΊΠΎΠ»Π΅Π±Π°Ρ‚ΡŒΡΡ ΠΈ вся систСма ΠΏΡ€ΠΈΡ…ΠΎΠ΄ΠΈΡ‚ Π² хаотичСскоС состояниС. Но ΠΊΠ°ΠΊ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΠ΅Ρ‚Π»ΠΈ Π·Π°ΠΌΡ‹ΠΊΠ°ΡŽΡ‚ΡΡ, снова связывая ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠΈ с ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСдой, модСль стабилизируСтся ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ саморСгуляция.



Рис. 5–6.

Π­Π²ΠΎΠ»ΡŽΡ†ΠΈΡ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π² ΠΌΠΈΡ€Π΅ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ: пунктирная кривая ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ рост

Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π² отсутствии ΠΆΠΈΠ·Π½ΠΈ; нСпрСрывная кривая ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, ΠΊΠ°ΠΊ Тизнь

ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ ΠΏΠΎΡΡ‚ΠΎΡΠ½Π½ΡƒΡŽ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ. Π“Ρ€Π°Ρ„ΠΈΠΊ взят ΠΈΠ· Lovelock (1991)

Π‘ Ρ‚Π΅Ρ… ΠΏΠΎΡ€ Π›Π°Π²Π»ΠΎΠΊ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π» нСсколько Π³ΠΎΡ€Π°Π·Π΄ΠΎ Π±ΠΎΠ»Π΅Π΅ слоТных вСрсий ΠΌΠΈΡ€Π° ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ. Π’ Π½ΠΎΠ²Ρ‹Ρ… модСлях ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π½Π΅ Π΄Π²Π°, Π° Π³ΠΎΡ€Π°Π·Π΄ΠΎ большС Π²ΠΈΠ΄ΠΎΠ² ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ с Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΠΏΠΈΠ³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠ΅ΠΉ; ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΌΠΎΠ΄Π΅Π»ΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠΈ Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ Ρ†Π²Π΅Ρ‚, ΠΌΠΎΠ΄Π΅Π»ΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΊΡ€ΠΎΠ»ΠΈΠΊΠΈ ΠΏΠΎΠ΅Π΄Π°ΡŽΡ‚ ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΊΠΈ, Π° лисы ΠΏΠΎΠ΅Π΄Π°ΡŽΡ‚ ΠΊΡ€ΠΎΠ»ΠΈΠΊΠΎΠ², ΠΈ Ρ‚. Π΄.73. ΠšΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π°Π½Π°Π»ΠΈΠ·Π° всСх этих вСсьма слоТных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ нСбольшиС Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Π΅ колСбания, ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π² ΠΏΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΌΠΈΡ€Π° ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ, ΡΠ³Π»Π°ΠΆΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΈ саморСгуляция становится всС Π±ΠΎΠ»Π΅Π΅ ΠΈ Π±ΠΎΠ»Π΅Π΅ устойчивой ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ возрастания слоТности ΠΌΠΎΠ΄Π΅Π»ΠΈ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π›Π°Π²Π»ΠΎΠΊ Π²Π²Π΅Π» Π² свои ΠΌΠΎΠ΄Π΅Π»ΠΈ катастрофы, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ с рСгулярными ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°ΠΌΠΈ ΡƒΠ½ΠΈΡ‡Ρ‚ΠΎΠΆΠ°ΡŽΡ‚ 30 % ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ. Он ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ», Ρ‡Ρ‚ΠΎ саморСгуляция ΠΌΠΈΡ€Π° ΠΌΠ°Ρ€Π³Π°Ρ€ΠΈΡ‚ΠΎΠΊ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°Π΅Ρ‚ Π·Π°ΠΌΠ΅Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π³ΠΈΠ±ΠΊΠΎΡΡ‚ΡŒ ΠΈ ΠΏΡ€ΠΈ этих Ρ€Π΅Π·ΠΊΠΈΡ… возмущСниях.

ВсС эти ΠΌΠΎΠ΄Π΅Π»ΠΈ Π²Ρ‹Π·Π²Π°Π»ΠΈ ΠΎΠΆΠΈΠ²Π»Π΅Π½Π½ΡƒΡŽ Π΄ΠΈΡΠΊΡƒΡΡΠΈΡŽ срСди Π±ΠΈΠΎΠ»ΠΎΠ³ΠΎΠ², Π³Π΅ΠΎΡ„ΠΈΠ·ΠΈΠΊΠΎΠ² ΠΈ Π³Π΅ΠΎΡ…ΠΈΠΌΠΈΠΊΠΎΠ², ΠΈ с Ρ‚Π΅Ρ… ΠΏΠΎΡ€, ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ Π±Ρ‹Π»ΠΈ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ‹, стала Π²Ρ‹Π·Ρ‹Π²Π°Ρ‚ΡŒ большС уваТСния Π² Π½Π°ΡƒΡ‡Π½ΠΎΠΌ сообщСствС ΠΈ Гайя- Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π°. БСгодня ΡƒΠΆΠ΅ Π² Ρ€Π°Π·Π½Ρ‹Ρ… частях свСта сущСствуСт нСсколько ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΈΡ… Π³Ρ€ΡƒΠΏΠΏ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ Π½Π°Π΄ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹ΠΌΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠ°ΠΌΠΈ Гайя-Ρ‚Π΅ΠΎΡ€ΠΈΠΈ74.

ΠŸΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠΈ синтСза

Π’ ΠΊΠΎΠ½Ρ†Π΅ 70-Ρ…, ΠΏΠΎΡ‡Ρ‚ΠΈ Π΄Π²Π°Π΄Ρ†Π°Ρ‚ΡŒ Π»Π΅Ρ‚ спустя послС Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… контСкстах Π±Ρ‹Π»ΠΈ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ самоорганизации, ΡƒΠ΄Π°Π»ΠΎΡΡŒ ΡΡ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ матСматичСскиС Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ°ΠΌΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ…ΡΡ систСм ΠΈ стал ΠΎΡ‡Π΅Π²ΠΈΠ΄Π΅Π½ Π½Π°Π±ΠΎΡ€ присущих ΠΈΠΌ характСристик: Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹ΠΉ ΠΏΠΎΡ‚ΠΎΠΊ энСргии ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠΈ Ρ‡Π΅Ρ€Π΅Π· систСму, Π΄Π°Π»Π΅ΠΊΠΎΠ΅ ΠΎΡ‚ равновСсия устойчивоС состояниС, Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ Π½ΠΎΠ²Ρ‹Ρ… ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΎΠ² порядка, Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Π°Ρ Ρ€ΠΎΠ»ΡŒ ΠΏΠ΅Ρ‚Π΅Π»ΡŒ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ связи ΠΈ матСматичСскоС описаниС Π² Π²ΠΈΠ΄Π΅ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Π’ это ΠΆΠ΅ врСмя австрийский Ρ„ΠΈΠ·ΠΈΠΊ Π­Ρ€ΠΈΡ… Π―Π½Ρ‡, Ρ€Π°Π±ΠΎΡ‚Π°Π²ΡˆΠΈΠΉ Ρ‚ΠΎΠ³Π΄Π° Π² ΠšΠ°Π»ΠΈΡ„ΠΎΡ€Π½ΠΈΠΉΡΠΊΠΎΠΌ унивСрситСтС Π² Π‘Π΅Ρ€ΠΊΠ»ΠΈ, Π² своСй ΠΊΠ½ΠΈΠ³Π΅ Β«Π‘Π°ΠΌΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΡƒΡŽΡ‰Π°ΡΡΡ ВсСлСнная» прСдставил ΠΎΠ΄Π½Ρƒ ΠΈΠ· ΠΏΠ΅Ρ€Π²Ρ‹Ρ… ΠΏΠΎΠΏΡ‹Ρ‚ΠΎΠΊ синтСза Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ самоорганизации, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡƒΡŽ, Π³Π»Π°Π²Π½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π½Π° Ρ‚Π΅ΠΎΡ€ΠΈΠΈ диссипативных структур ΠŸΡ€ΠΈΠ³ΠΎΠΆΠΈΠ½Π°75. И хотя сСгодня ΠΊΠ½ΠΈΠ³Π° Π―Π½Ρ‡Π° ΡƒΠΆΠ΅ устарСла, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π±Ρ‹Π»Π° написана ΠΏΡ€Π΅ΠΆΠ΄Π΅, Ρ‡Π΅ΠΌ ΡˆΠΈΡ€ΠΎΠΊΡƒΡŽ ΠΈΠ·Π²Π΅ΡΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Π»Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° слоТных систСм, ΠΈ Π½Π΅ Π²ΠΊΠ»ΡŽΡ‡Π°Π»Π° ΠΏΠΎΠ»Π½ΡƒΡŽ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡŽ автопоэза ΠΊΠ°ΠΊ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΆΠΈΠ²Ρ‹Ρ… систСм, Π² Ρ‚ΠΎ врСмя ΠΎΠ½Π° прСдставляла собой ΠΎΠ³Ρ€ΠΎΠΌΠ½ΡƒΡŽ Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ. Π­Ρ‚ΠΎ Π±Ρ‹Π»Π° пСрвая ΠΊΠ½ΠΈΠ³Π°, сдСлавшая Ρ‚Ρ€ΡƒΠ΄Ρ‹ ΠŸΡ€ΠΈΠ³ΠΎΠΆΠΈΠ½Π° доступными для ΡˆΠΈΡ€ΠΎΠΊΠΎΠΉ ΠΏΡƒΠ±Π»ΠΈΠΊΠΈ, ΠΈ Π² Π½Π΅ΠΉ Π±Ρ‹Π»Π° прСдпринята ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠ° ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ самыС Π½ΠΎΠ²Ρ‹Π΅ (Π½Π° Ρ‚ΠΎΡ‚ ΠΌΠΎΠΌΠ΅Π½Ρ‚) ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ ΠΈ ΠΈΠ΄Π΅ΠΈ Π² ΡΠ²ΡΠ·Π½ΡƒΡŽ ΠΏΠ°Ρ€Π°Π΄ΠΈΠ³ΠΌΡƒ самоорганизации. Мой синтСз этих ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΉ Π² настоящСй ΠΊΠ½ΠΈΠ³Π΅ являСтся Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΌΠ΅Ρ€Π΅ ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠΎΠΉ ΠΏΠ΅Ρ€Π΅Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π°Π½Π½ΠΈΠ΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π­Ρ€ΠΈΡ…Π° Π―Π½Ρ‡Π°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΡ ΠΊ Π³Π»Π°Π²Π΅ 5

Π‘ΠΌ. Checkland (1981), pp. 123ff.

Π‘ΠΌ. Ρ‚Π°ΠΌ ΠΆΠ΅, Ρ€. 129.

CM.Dickson(1971).

ЦитируСтся ΠΏΠΎ Checkland (1981), Ρ€. 137.

Π‘ΠΌ. Ρ‚Π°ΠΌ ΠΆΠ΅.

Π‘ΠΌ. Richardson (1992), pp. 149ff, 170ff.

Ulrich(1984).

8. Π‘ΠΌ. Konigswieser ΠΈ Lutz (1992).

9. Π‘ΠΌ. Π‘Π°Ρ€Π³Π°(1982),Ρ€. 116ff.

10. Lilienfeld(1978), pp. 191-2.

Π‘ΠΌ. Π½ΠΈΠΆΠ΅, с 140–142.

Π‘ΠΌ. Π²Ρ‹ΡˆΠ΅, с. 34–35.

Π‘ΠΌ. Π²Ρ‹ΡˆΠ΅, с. 53.

Бм. ниТС, с. 179 и далСС.

Π‘ΠΌ. Varela et al. (1992), p. 94.

Π‘ΠΌ. Π²Ρ‹ΡˆΠ΅, с. 73 ΠΈ Π΄Π°Π»Π΅Π΅.

McCulloch ΠΈ Pitts (1943).

Π‘ΠΌ., Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Ashby (1947).

Π‘ΠΌ. Yovits and Cameron (1959), Foerster and Zopf (1962); Yovits, Jacobi and Goldstein (1962).

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ избыточности ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ R = 1 β€” H/Hmax > Π³Π΄Π΅ Н β€” энтропия систСмы Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚, Π° Н ΠΌΠ°Ρ… β€” максимально возмоТная энтропия для этой систСмы.