Π§ΠΈΡ‚Π°ΠΉΡ‚Π΅ ΠΊΠ½ΠΈΠ³ΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ Π½Π° Bookidrom.ru! БСсплатныС ΠΊΠ½ΠΈΠ³ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΊΠ»ΠΈΠΊΠ΅

Π§ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΠ½Π»Π°ΠΉΠ½ Β«ΠœΠ΅Π½Π΅Π΄ΠΆΠΌΠ΅Π½Ρ‚: конспСкт Π»Π΅ΠΊΡ†ΠΈΠΉΒ». Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†Π° 72

Автор ДСнис Π¨Π΅Π²Ρ‡ΡƒΠΊ

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ согласования кластСризованных Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΊ А, Π’, Π‘,… ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ f(А, Π’, Π‘,…). Π’ΠΎΠ³Π΄Π° f(А, Π’) = [1<2<3<4<5<6<7<{8, 9}<10], f(А, Π‘) = [{1,3}<{2, 4}<5<6<7<8<9<10], f(Π’, Π‘) = [{1,2,3,4}<{5,6}<7<{8,9}<10], f(А, Π’, Π‘) = f(Π’, Π‘) = [{1,2,3,4} <{5,6}<7<{8, 9}<10]. Π’ случаС f(А, Π’) Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ изучСния с Ρ†Π΅Π»ΡŒΡŽ упорядочСния Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ 8 ΠΈ 9. Π’ случаС f(Π’, Π‘) ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ 1,2,3,4 объСдинились Π² ΠΎΠ΄ΠΈΠ½ кластСр, Ρ‚. Π΅. кластСризованныС Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΊΠΈ оказались Π½Π°ΡΡ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ²Ρ‹ΠΌΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° согласования Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° провСсти достаточно ΠΏΠΎΠ»Π½ΡƒΡŽ Π΄Π΅ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΡŽ Π·Π°Π΄Π°Ρ‡ΠΈ нахоТдСния ΠΈΡ‚ΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ мнСния экспСртов.

Рассмотрим Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ свойства Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² согласования. ΠŸΡƒΡΡ‚ΡŒ D = f(А, Π’, C,…). Если a<b Π² ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‰Π΅ΠΉ кластСризованной Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΊΠ΅ D, Ρ‚ΠΎ a<b ΠΈΠ»ΠΈ a=b Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· исходных Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΊ А, Π’, C, … ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‰ΠΈΡ… кластСризованных Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΊ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡ‚ΡŒΡΡ поэтапно. Π’ частности, f(A, B, C) = f(f(A, B), f(A, C), f(B, C)). Ясно, Ρ‡Ρ‚ΠΎ ядро ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠΉ для Π½Π°Π±ΠΎΡ€Π° кластСризованных Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΊ являСтся объСдинСниСм Ρ‚Π°ΠΊΠΈΡ… ядСр для всСх ΠΏΠ°Ρ€ рассматриваСмых Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΊ . ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‰ΠΈΡ… кластСризованных Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΊ Π½Π°Ρ†Π΅Π»Π΅Π½ΠΎ Π½Π° Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠ±Ρ‰Π΅Π³ΠΎ упорядочСния Π² исходных кластСризованных Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΊΠ°Ρ…. Однако ΠΏΡ€ΠΈ этом Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ±Ρ‰ΠΈΠ΅ свойства исходных кластСризованных Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΊ ΠΌΠΎΠ³ΡƒΡ‚ Ρ‚Π΅Ρ€ΡΡ‚ΡŒΡΡ. Π’Π°ΠΊ, ΠΏΡ€ΠΈ согласовании Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΊ Π’ ΠΈ Π‘, рассмотрСнных Π²Ρ‹ΡˆΠ΅, противорСчия Π² упорядочСнии элСмСнтов 1 ΠΈ 2 Π½Π΅ Π±Ρ‹Π»ΠΎ – Π² Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΊΠ΅ Π’ эти ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ Π²Ρ…ΠΎΠ΄ΠΈΠ»ΠΈ Π² ΠΎΠ΄ΠΈΠ½ кластСр, Ρ‚. Π΅. 1 = 2, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ 1<2 Π² кластСризованной Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΊΠ΅ Π‘. Π—Π½Π°Ρ‡ΠΈΡ‚, ΠΏΡ€ΠΈ ΠΈΡ… ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠΌ рассмотрСнии ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠ½ΡΡ‚ΡŒ упорядочСниС 1 < 2. Однако Π² f(Π’,C) ΠΎΠ½ΠΈ ΠΏΠΎΠΏΠ°Π»ΠΈ Π² ΠΎΠ΄ΠΈΠ½ кластСр, Ρ‚. Π΅. Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈΡ… упорядочСния исчСзла. Π­Ρ‚ΠΎ связано с ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° 3, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ «пСрСскочил» Π² Π‘ Π½Π° ΠΏΠ΅Ρ€Π²ΠΎΠ΅ мСсто ΠΈ Β«ΡƒΠ²Π»Π΅ΠΊ с собой Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ΅Β» ΠΏΠ°Ρ€Ρƒ (1, 2), ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ²Ρ‹Π΅ ΠΏΠ°Ρ€Ρ‹ ΠΈ с 1, ΠΈ с 2. Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, связная ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° Π³Ρ€Π°Ρ„Π°, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ ядру ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠΉ, сама ΠΏΠΎ сСбС Π½Π΅ всСгда являСтся ΠΏΠΎΠ»Π½Ρ‹ΠΌ Π³Ρ€Π°Ρ„ΠΎΠΌ. ΠΠ΅Π΄ΠΎΡΡ‚Π°ΡŽΡ‰ΠΈΠ΅ Ρ€Π΅Π±Ρ€Π° ΠΏΡ€ΠΈ этом ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΏΠ°Ρ€Π°ΠΌ Ρ‚ΠΈΠΏΠ° (1, 2), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ сами ΠΏΠΎ сСбС Π½Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ²Ρ‹ΠΌΠΈ, Π½ΠΎ Β«ΡƒΠ²Π»Π΅ΠΊΠ°ΡŽΡ‚ΡΡ Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ΅Β» Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠΈ.

ΠΠ΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ согласования кластСризованных Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΊ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚, Π² частности, ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ примСнСния экспСртных ΠΎΡ†Π΅Π½ΠΎΠΊ Π² Π·Π°Π΄Π°Ρ‡Π°Ρ… экологичСского страхования ΠΈ химичСской бСзопасности биосфСры. Как ΡƒΠΆΠ΅ Π³ΠΎΠ²ΠΎΡ€ΠΈΠ»ΠΎΡΡŒ, популярным являСтся ΠΌΠ΅Ρ‚ΠΎΠ΄ упорядочСния ΠΏΠΎ срСдним Ρ€Π°Π½Π³Π°ΠΌ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ итоговая Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΊΠ° строится Π½Π° основС срСдних арифмСтичСских Ρ€Π°Π½Π³ΠΎΠ², выставлСнных ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ экспСртами. Однако ΠΈΠ· Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ извСстно, Ρ‡Ρ‚ΠΎ Π±ΠΎΠ»Π΅Π΅ обоснованным являСтся использованиС Π½Π΅ срСдних арифмСтичСских, Π° ΠΌΠ΅Π΄ΠΈΠ°Π½. ВмСстС с Ρ‚Π΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ срСдних Ρ€Π°Π½Π³ΠΎΠ² вСсьма извСстСн ΠΈ ΡˆΠΈΡ€ΠΎΠΊΠΎ примСняСтся, Ρ‚Π°ΠΊ Ρ‡Ρ‚ΠΎ просто ΠΎΡ‚Π±Ρ€ΠΎΡΠΈΡ‚ΡŒ Π΅Π³ΠΎ нСцСлСсообразно. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π±Ρ‹Π»ΠΎ принято Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΎΠ± ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΎΠ±Π΅ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ². РСализация этого Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ согласования Π΄Π²ΡƒΡ… ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… кластСризованных Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΊ.

РассматриваСмый ΠΌΠ΅Ρ‚ΠΎΠ΄ согласования кластСризованных Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΊ построСн Π² соотвСтствии с ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ устойчивости , согласно ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ…, ΠΈΠ½Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½Ρ‹ΠΉ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, соотвСтствуСт Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ расчСтов, зависящий ΠΎΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, ΠΎΡ‚Ρ€Π°ΠΆΠ°Π΅Ρ‚ ΡΡƒΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²ΠΈΠ·ΠΌ исслСдоватСля, Π° Π½Π΅ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ.

3.4.7. ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° экспСртных ΠΎΡ†Π΅Π½ΠΎΠΊ

ΠŸΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΌΠ½Π΅Π½ΠΈΠΉ экспСртов ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ самыС Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Π΅ статистичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ ΠΈΡ… – Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ всю ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½ΡƒΡŽ статистику. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ основныС ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ Π² настоящСС врСмя ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ матСматичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ экспСртных ΠΎΡ†Π΅Π½ΠΎΠΊ – это ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° согласованности ΠΌΠ½Π΅Π½ΠΈΠΉ экспСртов (ΠΈΠ»ΠΈ классификация экспСртов, Ссли Π½Π΅Ρ‚ согласованности) ΠΈ усрСднСниС ΠΌΠ½Π΅Π½ΠΈΠΉ экспСртов Π²Π½ΡƒΡ‚Ρ€ΠΈ согласованной Π³Ρ€ΡƒΠΏΠΏΡ‹.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ экспСртов Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π°Ρ… экспСртного опроса – Π½Π΅ числа, Π° Ρ‚Π°ΠΊΠΈΠ΅ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ нСчисловой ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹, ΠΊΠ°ΠΊ Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ качСствСнных ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ², Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΊΠΈ, разбиСния, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠ°Ρ€Π½Ρ‹Ρ… сравнСний, Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΈΠ΅ прСдпочтСния ΠΈ Ρ‚. Π΄., Ρ‚ΠΎ для ΠΈΡ… Π°Π½Π°Π»ΠΈΠ·Π° ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ статистики ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² нСчисловой ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹.

ΠŸΠΎΡ‡Π΅ΠΌΡƒ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ экспСртов часто носят нСчисловой Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€? НаиболСС ΠΎΠ±Ρ‰ΠΈΠΉ ΠΎΡ‚Π²Π΅Ρ‚ состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ люди Π½Π΅ мыслят числами. Π’ ΠΌΡ‹ΡˆΠ»Π΅Π½ΠΈΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΎΠ±Ρ€Π°Π·Ρ‹, слова, Π½ΠΎ Π½Π΅ числа. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΡ‚ экспСрта ΠΎΡ‚Π²Π΅Ρ‚ Π² Ρ„ΠΎΡ€ΠΌΠ΅ чисСл – Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΡΠΈΠ»ΠΎΠ²Π°Ρ‚ΡŒ Π΅Π³ΠΎ Ρ€Π°Π·ΡƒΠΌ. Π”Π°ΠΆΠ΅ Π² экономикС ΠΏΡ€Π΅Π΄ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚Π΅Π»ΠΈ, принимая Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, лишь частично ΠΎΠΏΠΈΡ€Π°ΡŽΡ‚ΡΡ Π½Π° числСнныС расчСты. Π­Ρ‚ΠΎ Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· условного (Ρ‚. Π΅. опрСдСляСмого ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎ принятыми соглашСниями, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΠΎΡ„ΠΎΡ€ΠΌΠ»Π΅Π½Π½Ρ‹ΠΌΠΈ Π² Π²ΠΈΠ΄Π΅ инструкций) Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π° балансовой ΠΏΡ€ΠΈΠ±Ρ‹Π»ΠΈ, Π°ΠΌΠΎΡ€Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… отчислСний ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… экономичСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Ρ„Ρ€Π°Π·Π° Ρ‚ΠΈΠΏΠ° Β«Ρ„ΠΈΡ€ΠΌΠ° стрСмится ΠΊ максимизации ΠΏΡ€ΠΈΠ±Ρ‹Π»ΠΈΒ» Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ строго ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ смысла. Достаточно ΡΠΏΡ€ΠΎΡΠΈΡ‚ΡŒ: Β«ΠœΠ°ΠΊΡΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ ΠΏΡ€ΠΈΠ±Ρ‹Π»ΠΈ – Π·Π° ΠΊΠ°ΠΊΠΎΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄?Β» И сразу станСт ясно, Ρ‡Ρ‚ΠΎ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΡ‹Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ зависит ΠΎΡ‚ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π° планирования.

ЭкспСрт ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ Π΄Π²Π° ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°, ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, ΠΊΠ°ΠΊΠΎΠΉ ΠΈΠ· Π΄Π²ΡƒΡ… Π»ΡƒΡ‡ΡˆΠ΅ (ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΠ°Ρ€Π½Ρ‹Ρ… сравнСний), Π΄Π°Ρ‚ΡŒ ΠΈΠΌ ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ‚ΠΈΠΏΠ° Β«Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΉΒ», Β«ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΡ‹ΠΉΒ», Β«ΠΏΠ»ΠΎΡ…ΠΎΠΉΒ», ΡƒΠΏΠΎΡ€ΡΠ΄ΠΎΡ‡ΠΈΡ‚ΡŒ нСсколько ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² ΠΏΠΎ ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Π½ΠΎ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΡ‚Π²Π΅Ρ‚ΠΈΡ‚ΡŒ, Π²ΠΎ сколько Ρ€Π°Π· ΠΈΠ»ΠΈ Π½Π° сколько ΠΎΠ΄ΠΈΠ½ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ Π»ΡƒΡ‡ΡˆΠ΅ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ. Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ экспСрта ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Ρ‹ Π² порядковой шкалС, ΠΈΠ»ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΊΠ°ΠΌΠΈ, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ ΠΏΠ°Ρ€Π½Ρ‹Ρ… сравнСний ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ нСчисловой ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹, Π½ΠΎ Π½Π΅ числами. РаспространСнноС Π·Π°Π±Π»ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ экспСртов ΡΡ‚Π°Ρ€Π°ΡŽΡ‚ΡΡ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ числа, Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‚ΡΡ Β«ΠΎΡ†ΠΈΡ„Ρ€ΠΎΠ²ΠΊΠΎΠΉΒ» ΠΈΡ… ΠΌΠ½Π΅Π½ΠΈΠΉ, приписывая этим мнСниям числСнныС значСния – Π±Π°Π»Π»Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΡ‚ΠΎΠΌ ΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°ΡŽΡ‚ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½ΠΎΠΉ статистики ΠΊΠ°ΠΊ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… физико—тСхничСских ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ. Π’ случаС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Β«ΠΎΡ†ΠΈΡ„Ρ€ΠΎΠ²ΠΊΠΈΒ» Π²Ρ‹Π²ΠΎΠ΄Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ…, ΠΌΠΎΠ³ΡƒΡ‚ Π½Π΅ ΠΈΠΌΠ΅Ρ‚ΡŒ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΊ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ.

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° согласованности ΠΌΠ½Π΅Π½ΠΈΠΉ экспСртов ΠΈ классификация экспСртных ΠΌΠ½Π΅Π½ΠΈΠΉ. Ясно, Ρ‡Ρ‚ΠΎ мнСния Ρ€Π°Π·Π½Ρ‹Ρ… экспСртов Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ. Π’Π°ΠΆΠ½ΠΎ ΠΏΠΎΠ½ΡΡ‚ΡŒ, насколько Π²Π΅Π»ΠΈΠΊΠΎ это Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠ΅. Если ΠΌΠ°Π»ΠΎ – усрСднСниС ΠΌΠ½Π΅Π½ΠΈΠΉ экспСртов ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π΅, Ρ‡Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Ρƒ всСх экспСртов, отбросив случайныС отклонСния Π² Ρ‚Ρƒ ΠΈΠ»ΠΈ ΠΈΠ½ΡƒΡŽ сторону. Если Π²Π΅Π»ΠΈΠΊΠΎ – усрСднСниС являСтся чисто Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€ΠΎΠΉ. Π’Π°ΠΊ, Ссли ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ сСбС, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ экспСртов Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ ΠΏΠΎΠΊΡ€Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ Π±ΡƒΠ±Π»ΠΈΠΊΠ°, Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ усрСднСниС ΡƒΠΊΠ°ΠΆΠ΅Ρ‚ Π½Π° Ρ†Π΅Π½Ρ‚Ρ€ Π΄Ρ‹Ρ€ΠΊΠΈ ΠΎΡ‚ Π±ΡƒΠ±Π»ΠΈΠΊΠ°, Π° Ρ‚Π°ΠΊΠΎΠ³ΠΎ мнСния Π½Π΅ придСрТиваСтся Π½ΠΈ ΠΎΠ΄ΠΈΠ½ экспСрт. Из сказанного ясна Π²Π°ΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠΈ согласованности ΠΌΠ½Π΅Π½ΠΈΠΉ экспСртов.

Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ряд ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ‚Π°ΠΊΠΎΠΉ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠΈ. БтатистичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠΈ согласованности зависят ΠΎΡ‚ матСматичСской ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ ΠΎΡ‚Π²Π΅Ρ‚ΠΎΠ² экспСртов. Π‘ΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ статистичСскиС Ρ‚Π΅ΠΎΡ€ΠΈΠΈ вСсьма Ρ‚Ρ€ΡƒΠ΄Π½Ρ‹, Ссли эти ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ – Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΈΠ»ΠΈ разбиСния, ΠΈ достаточно просты, Ссли ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ – Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ нСзависимых ΠΏΠ°Ρ€Π½Ρ‹Ρ… сравнСний. ΠžΡ‚ΡΡŽΠ΄Π° Π²Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ рСкомСндация ΠΏΠΎ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ экспСртного опроса: Π½Π΅ ΡΡ‚Π°Ρ€Π°ΠΉΡ‚Π΅ΡΡŒ сразу ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΡ‚ экспСрта Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΊΡƒ ΠΈΠ»ΠΈ Ρ€Π°Π·Π±ΠΈΠ΅Π½ΠΈΠ΅, Π΅ΠΌΡƒ Ρ‚Ρ€ΡƒΠ΄Π½ΠΎ это ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ, Π΄Π° ΠΈ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ΡΡ матСматичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π΄Π°Π»Π΅ΠΊΠΎ ΠΏΡ€ΠΎΠ΄Π²ΠΈΠ½ΡƒΡ‚ΡŒΡΡ Π² Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…. НапримСр, Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΡŽΡ‚ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡΡ‚ΡŒ ΡΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΊ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ коэффициСнта Ρ€Π°Π½Π³ΠΎΠ²ΠΎΠΉ ΠΊΠΎΠ½ΠΊΠΎΡ€Π΄Π°Ρ†ΠΈΠΈ ΠšΠ΅Π½Π΄Π°Π»Π»Π°β€”Π‘ΠΌΠΈΡ‚Π°. Но Π΄Π°Π²Π°ΠΉΡ‚Π΅ вспомним, какая статистичСская модСль ΠΏΡ€ΠΈ этом ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΡΠ΅Ρ‚ΡΡ нулСвая Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π°, согласно ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΊΠΈ нСзависимы ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ распрСдСлСны Π½Π° мноТСствС всСх Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΊ. Если эта Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π° принимаСтся, Ρ‚ΠΎ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ, Π½ΠΈ ΠΎ ΠΊΠ°ΠΊΠΎΠΉ согласованности ΠΌΠ½Π΅Π½ΠΈΠΉ экспСртов Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ΡŒ нСльзя. А Ссли отклоняСтся? Π’ΠΎΠΆΠ΅ нСльзя. НапримСр, ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π΄Π²Π° (ΠΈΠ»ΠΈ большС) Ρ†Π΅Π½Ρ‚Ρ€Π°, ΠΎΠΊΠΎΠ»ΠΎ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ экспСртов. НулСвая Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π° отклоняСтся. Но Ρ€Π°Π·Π²Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ΡŒ ΠΎ согласованности?

ЭкспСрту Π³ΠΎΡ€Π°Π·Π΄ΠΎ Π»Π΅Π³Ρ‡Π΅ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡˆΠ°Π³Ρƒ ΡΡ€Π°Π²Π½ΠΈΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π΄Π²Π° ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°. ΠŸΡƒΡΡ‚ΡŒ ΠΎΠ½ занимаСтся ΠΏΠ°Ρ€Π½Ρ‹ΠΌΠΈ сравнСниями. НСпарамСтричСская тСория ΠΏΠ°Ρ€Π½Ρ‹Ρ… сравнСний (тСория люсианов) позволяСт Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ слоТныС Π·Π°Π΄Π°Ρ‡ΠΈ, Ρ‡Π΅ΠΌ статистика Ρ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΊ ΠΈΠ»ΠΈ Ρ€Π°Π·Π±ΠΈΠ΅Π½ΠΈΠΉ. Π’ частности, вмСсто Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ распрСдСлСния ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρƒ однородности, Ρ‚. Π΅. вмСсто совпадСния всСх распрСдСлСний с ΠΎΠ΄Π½ΠΈΠΌ фиксированным (Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡΡ‚ΡŒ лишь совпадСниС распрСдСлСний ΠΌΠ½Π΅Π½ΠΈΠΉ экспСртов ΠΌΠ΅ΠΆΠ΄Ρƒ собой, Ρ‡Ρ‚ΠΎ СстСствСнно Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ ΡΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ ΠΈΡ… ΠΌΠ½Π΅Π½ΠΈΠΉ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, удаСтся ΠΈΠ·Π±Π°Π²ΠΈΡ‚ΡŒΡΡ ΠΎΡ‚ нССстСствСнного прСдполоТСния равномСрности.

ΠŸΡ€ΠΈ отсутствии согласованности экспСртов СстСствСнно Ρ€Π°Π·Π±ΠΈΡ‚ΡŒ ΠΈΡ… Π½Π° Π³Ρ€ΡƒΠΏΠΏΡ‹ сходных ΠΏΠΎ мнСнию. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ статистики ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² нСчисловой ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹, относящимися ΠΊ кластСр—анализу, ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ввСдя ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΡƒ Π² пространство ΠΌΠ½Π΅Π½ΠΈΠΉ экспСртов. ИдСя амСриканского ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° Π”ΠΆΠΎΠ½Π° КСмСни ΠΎΠ± аксиоматичСском Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊ (см. Π½ΠΈΠΆΠ΅) нашла многочислСнных ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Ρ‚Π΅Π»Π΅ΠΉ. Однако ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ кластСр—анализа ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΡΠ²Π»ΡΡŽΡ‚ΡΡ эвристичСскими. Π’ частности, Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ с ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΉ статистичСской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Ρ‚ΡŒ Β«Π·Π°ΠΊΠΎΠ½Π½ΠΎΡΡ‚ΡŒΒ» объСдинСния Π΄Π²ΡƒΡ… кластСров Π² ΠΎΠ΄ΠΈΠ½. Π˜ΠΌΠ΅Π΅Ρ‚ΡΡ Π²Π°ΠΆΠ½ΠΎΠ΅ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ – для нСзависимых ΠΏΠ°Ρ€Π½Ρ‹Ρ… сравнСний (люсианов) Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡΡ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ объСдинСния кластСров ΠΊΠ°ΠΊ ΡΡ‚Π°Ρ‚ΠΈΡΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρƒ . Π­Ρ‚ΠΎ – Π΅Ρ‰Π΅ ΠΎΠ΄ΠΈΠ½ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ Π·Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Ρ‚Π΅ΠΎΡ€ΠΈΡŽ люсианов ΠΊΠ°ΠΊ ядро матСматичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² экспСртных ΠΎΡ†Π΅Π½ΠΎΠΊ.