Читайте книги онлайн на Bookidrom.ru! Бесплатные книги в одном клике

Читать онлайн «Логика». Страница 47

Автор Александр Ивин

Все рыбы (Р) дышат жабрами (М).

Киты (S) не дышат жабрами (М).

Все киты не рыбы.

По схеме третьей фигуры построен силлогизм:

Все бамбуки (М) цветут один раз в жизни (Р).

Все бамбуки (М) – многолетние растения (S).

Некоторые многолетние растения цветут один раз в жизни.

По схеме четвёртой фигуры построен силлогизм:

Все рыбы (Р) плавают (М).

Все плавающие (М) живут в воде (S).

Некоторые живущие в воде – рыбы.

Посылками и заключениями силлогизмов могут быть категорические суждения четырех видов: SaP, SiP, SeP и SoP.

Модусами силлогизма называются разновидности фигур, отличающиеся характером посылок и заключения.

Всего с точки зрения всевозможных сочетаний посылок и заключения в каждой фигуре насчитывается 64 модуса. В четырех фигурах 4 × 64 = 256 модусов.

Силлогизмы, как и все дедуктивные умозаключения, делятся на правильные и неправильные. Задача логической теории силлогизма – систематизировать правильные силлогизмы, указать их отличительные черты.

Из всех возможных модусов силлогизма только 24 модуса являются правильными, по шесть в каждой фигуре. Вот традиционно принятые названия правильных модусов первых двух фигур:

1-я фигура: Barbara, Celarent, Darii, Ferio, Barbari, Celaront;

2-я фигура: Cesare, Camestres, Festino, Baroco, Cesaro, Camestros.

В каждом из этих названий содержатся три гласных буквы. Они указывают, какие именно категорические высказывания используются в модусе в качестве его посылок и заключения. Так, название Celarent означает, что в этом модусе первой фигуры большей посылкой является общеотрицательное высказывание (SeP), меньшей – общеутвердительное (SaP) и заключением – общеотрицательное высказывание (SeP).

Из 24 правильных модусов силлогизма 5 являются ослабленными: заключениями в них являются частноутвердительные или частноотрицательные высказывания, хотя в случае других модусов эти же посылки дают общеутвердительные или общеотрицательные заключения (ср. модусы Cesare и Cesaro второй фигуры). Если отбросить ослабленные модусы, остаётся 19 правильных модусов силлогизма.

Для оценки правильности силлогизма могут использоваться круги Эйлера, иллюстрирующие отношения между объёмами имён.

Возьмём, для примера, силлогизм:

Все металлы (М) ковки (Р).

Железо (S) – металл (М).

Железо (S) ковко (Р).

Отношения между тремя терминами этого силлогизма (модус Barbara) представляются тремя концентрическими кругами. Эта схема интерпретируется так: если все М (металлы) входят в объём Р (ковких тел), то с необходимостью S (железо) войдёт в объём Р (ковких тел), что и утверждается в заключении «Железо ковко».

Другой пример силлогизма:

Все рыбы (Р) не имеют перьев (М).

У всех птиц (S) есть перья (М).

Ни одна птица (S) не является рыбой (Р).

Отношения между терминами данного силлогизма (модус Cesare) представлены на рисунке. Он истолковывается так: если все S (птицы) входят в объём М (имеющие перья), а М не имеет ничего общего с Р (рыбы), то у S (птицы) нет ничего общего с Р (рыбы), что и утверждается в заключении.

Пример неправильного силлогизма:

Все тигры (М) – млекопитающие (Р).

Все тигры (М) – хищники (S).

Все хищники (S) – млекопитающие (Р).

Отношения между терминами данного силлогизма могут быть представлены двояко, как это показано на рисунке. И в первом, и во втором случаях все М (тигры) входят в объём Р (млекопитающие) и все М входят также в объём S (хищники). Это соответствует информации, содержащейся в двух посылках силлогизма. Но отношение между объёмами Р и S может быть двояким. Охватывая М, объём S может полностью входить в объём Р или объём S может лишь пересекаться с объёмом Р. В первом случае можно было бы сделать общее заключение «Все хищники – млекопитающие», но во втором случае правомерно только частное заключение «Некоторые хищники – млекопитающие». Информации, позволяющей сделать выбор между этими двумя вариантами, в посылках не содержится. Значит, мы не вправе делать общее заключение. Силлогизм не является правильным.

В силлогизме, как и во всяком дедуктивном умозаключении, в заключении не может содержаться информация, отсутствующая в посылках. Заключение только развёртывает информацию посылок, но не может привносить новую информацию, отсутствующую в них.

В обычных рассуждениях нередки силлогизмы, в которых не выражается явно одна из посылок или заключение. Такие силлогизмы называются энтимемами. Примеры энтимем: «Щедрость заслуживает похвалы, как и всякая добродетель», «Он – учёный, поэтому любопытство ему не чуждо», «Керосин – жидкость, поэтому он передаёт давление во все стороны равномерно» и т.п. В первом случае опущена меньшая посылка «Щедрость – это добродетель», во втором – большая посылка «Всякому учёному не чуждо любопытство», в третьем – опять-таки большая посылка «Всякая жидкость передаёт давление во все стороны равномерно».

Для оценки правильности рассуждения в энтимеме следует восстановить её в полный силлогизм.

Глава 10

Доказательство и опровержение

1. Понятие доказательства и его структура


Об И. Ньютоне рассказывают, что, будучи студентом, он начал изучение геометрии, как было принято в то время, с чтения «Геометрии» Евклида. Знакомясь с формулировками теорем, он видел, что они справедливы, и не изучал доказательства. Его удивляло, что люди затрачивают столько усилий, чтобы доказать совершенно очевидное.

Позднее Ньютон изменил своё мнение о необходимости доказательств в математике и других науках и хвалил Евклида как раз за безупречность и строгость его доказательств.

Невозможно переоценить значение доказательств в нашей жизни и особенно в науке. И тем не менее доказательства встречаются не так часто, как хотелось бы. К доказательствам прибегают все, но редко кто задумывается над тем, что означает «доказать», почему доказательство «доказывает», всякое ли утверждение можно доказать или опровергнуть, все ли нужно доказывать и т.п.

Наше представление о доказательстве как особой интеллектуальной операции формируется в процессе проведения конкретных доказательств. Изучая разные области знания, мы усваиваем и относящиеся к ним доказательства. На этой основе мы постепенно составляем – чаще всего незаметно для себя – общее интуитивное представление о доказательстве как таковом, его общей структуре, не зависящей от конкретного материала, о целях и смысле доказательства и т.д.

Изучение доказательства на конкретных его образцах и интересно, и полезно. Но также необходимо знакомство с основами логической теории доказательства, которая говорит о доказательствах безотносительно к области их применения. Практические навыки доказательства и интуитивное представление о нем достаточны для многих целей, но далеко не для всех. Практика и здесь, как обычно, нуждается в теории.

Логическая теория доказательства в основе своей проста и доступна, хотя её детализация требует специального символического языка и другой изощрённой техники современной логики.

Под доказательством в логике понимается процедура установления истинности некоторого утверждения путём приведения других утверждений, истинность которых уже известна и из которых с необходимостью вытекает первое.

В доказательстве различаются тезис – утверждение, которое нужно доказать, основание (аргументы) – те положения, с помощью которых доказывается тезис, и логическая связь между аргументами и тезисом. Понятие доказательства всегда предполагает, таким образом, указание посылок, на которые опирается тезис, и тех логических правил, по которым осуществляются преобразования утверждений в ходе доказательства.

К примеру, нужно доказать тезис «Все металлы проводят электрический ток». Подбираем в качестве аргументов утверждения, которые являются, во-первых, истинными и из которых, во-вторых, логически вытекает тезис. В качестве таких утверждений можно принять, в частности, следующие: «Все вещества, имеющие в своей кристаллической решётке свободные электроны, проводят электрический ток» и «Все металлы имеют в своей кристаллической решётке свободные электроны». Строим умозаключение: