ΠΠ· ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ Π½Π° Π±ΠΎΠ»ΡΡΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½Π°Ρ ΡΠ½ΡΡΠΎΠΏΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΡΠ΅Π΄Π½Π΅ΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ β k lnΟ, Π³Π΄Π΅ k β ΠΏΠΎΡΡΠΎΡΠ½Π½Π°Ρ ΠΠΎΠ»ΡΡΠΌΠ°Π½Π°, ΡΠ°ΠΊ ΡΡΠΎ ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ (3.8) ΠΈΠΌΠ΅Π΅ΠΌ:
<βk lnΟ> = βk Tr(Ο lnΟ)
ΠΡΡΡΠ΄Π° ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΈ ΡΠ½ΡΡΠΎΠΏΠΈΠ΅ΠΉ Tr(Ο lnΟ) = <lnΟ>, ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ½ΡΡΠΎΠΏΠΈΠ΅ΠΉ ΡΠΎΠ½ ΠΠ΅ΠΉΠΌΠ°Π½Π° ΠΈ ΡΠ°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΡΠ΅ΠΉΡΠ°Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ΅ΡΡ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ. ΠΠ½Π° ΠΈ Π±ΡΠ»Π° Π²Π²Π΅Π΄Π΅Π½Π° Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΌΠ΅ΡΡ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ Π·Π°ΠΏΡΡΠ°Π½Π½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ (3.6). Π Π°Π·Π»ΠΈΡΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΡΠΌ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΎΠΌ ΠΈ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΎΠΌ ΠΏΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ 2 Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π½Π΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½ΠΎ.
ΠΠ°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ Tr(Ο lnΟ) ΠΈ ln[Tr(Ο2)] ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ Π² ΠΎΠ΄Π½ΠΈΡ ΠΈ ΡΠ΅Ρ ΠΆΠ΅ ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΈ Π½ΠΈΠΊΠΎΠ³Π΄Π° ΡΠΈΠ»ΡΠ½ΠΎ Π½Π΅ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ Π΄ΡΡΠ³ ΠΎΡ Π΄ΡΡΠ³Π°. ΠΠ΄Π½Π°ΠΊΠΎ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠΎΠΉ ΠΌΠ΅ΡΡ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΏΡΠΈΡ ΠΎΠ΄ΠΈΡΡΡ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡΡ ΡΡΠ°Π²ΠΈΡΡ Π·Π½Π°ΠΊ ΠΌΠΈΠ½ΡΡ, ΠΊΠ°ΠΊ Π² (3.6). ΠΡΠΈ ΡΡΠΎΠΌ ΠΈΠ½ΠΎΠ³Π΄Π° Π·Π°Π±ΡΠ²Π°Π΅ΡΡΡ, ΡΡΠΎ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π΅ ΠΊ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΡ Ρ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠ΅ΠΉ ΠΏΡΠΎΠΈΠ·ΠΎΡΠ΅Π» ΡΠ²ΠΎΠ΅ΠΎΠ±ΡΠ°Π·Π½ΡΠΉ Β«ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΡΡΒ»: ΡΠ°ΠΌ, Π³Π΄Π΅ Π±ΡΠ» ΠΌΠΈΠ½ΠΈΠΌΡΠΌ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ, β ΡΠ΅ΠΏΠ΅ΡΡ ΡΡΠ°Π» ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ, Π° ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ (Π΅Π΄ΠΈΠ½ΠΈΡΠ° Π΄Π»Ρ ΡΠΈΡΡΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ) ΠΎΠ±ΡΠ°ΡΠΈΠ»ΡΡ Π² Π½ΡΠ»Ρ. Π₯ΠΎΡΡ ΠΈ ΡΡΡ ΡΠΈΡΡΠ°ΡΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠ°ΠΊΡΠΎΠ²Π°ΡΡ ΡΠ°ΠΊ, ΡΡΠΎ, Ρ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ Π²Π½Π΅ΡΠ½Π΅Π³ΠΎ Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»Ρ, ΠΎ ΡΠΈΡΡΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ ΠΎΠ½ Π½ΠΈΡΠ΅Π³ΠΎ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ ΡΠΊΠ°Π·Π°ΡΡ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΡΠΎ Π·Π°ΠΌΠΊΠ½ΡΡΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΠ°, ΠΊΠΎΡΠΎΡΡΡ Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»Ρ Π΅ΡΠ΅ Π½Π΅ Β«ΠΏΠΎΡΡΠ΅Π²ΠΎΠΆΠΈΠ»Β» ΡΠ²ΠΎΠΈΠΌ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ.
ΠΠ²Π°Π½ΡΠΎΠ²Π°Ρ ΡΠ΅ΠΎΡΠΈΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ²ΡΠ·ΡΠ²Π°Π΅Ρ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ Ρ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· ΡΠ½ΡΡΠΎΠΏΠΈΡ ΡΠΎΠ½ ΠΠ΅ΠΉΠΌΠ°Π½Π°, ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΎΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°. ΠΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π΅ΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ½Π΅ΡΠ³ΠΈΠΈ, Π° ΠΎΠ±ΠΌΠ΅Π½ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠ΅ΠΉ Π½Π°ΠΏΡΡΠΌΡΡ ΡΠ²ΡΠ·Π°Π½ Ρ ΠΎΠ±ΠΌΠ΅Π½ΠΎΠΌ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ (ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎ ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ΅) β ΡΡΠΎ Π΅ΡΠ΅ ΠΎΠ΄ΠΈΠ½ Π²Π°ΠΆΠ½ΡΠΉ Π²ΡΠ²ΠΎΠ΄, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ΄Π΅Π»Π°Π½ Π² ΡΠΈΠ·ΠΈΠΊΠ΅ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ.
ΠΡΡΡ ΠΈ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΡΡΡΠΎΠ³ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ, ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΠ΅ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ, ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΈ ΡΠ½ΡΡΠΎΠΏΠΈΡ. Π ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΡΠ΅ΠΎΡΠ΅ΠΌΠ° ΠΠ°ΡΠ³ΠΎΠ»ΡΡΠ°-ΠΠ΅Π²ΠΈΡΠΈΠ½Π°[91] ΡΡΠ²Π΅ΡΠΆΠ΄Π°Π΅Ρ, ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ Π»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΌΠΎΠΆΠ΅Ρ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π² Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΎ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, Π° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΡΡ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΌΠΎΠΆΠ΅Ρ Π·Π°ΡΠ΅Π³ΠΈΡΡΡΠΈΡΠΎΠ²Π°ΡΡ (Π²ΠΎΡΠΏΡΠΈΠ½ΡΡΡ), ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΎ Π΅Π΅ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ½ΡΡΠΎΠΏΠΈΠ΅ΠΉ[92].
ΠΡΡΠΌΠ°Ρ ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ ΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΠΌΡΠΌΠΈ Π»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΡΠΌΠΈ (ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΠΌΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ°ΠΌΠΈ) ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠ΅ΡΠ΅ΠΊΠΈΠ½ΡΡΡ ΠΌΠΎΡΡΠΈΠΊ ΠΊ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΡΠΎΡΠ΅ΡΡΠ°ΠΌ, ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°ΡΡΠΈΠΌ ΡΠ°Π±ΠΎΡΡ ΡΠΎΠ·Π½Π°Π½ΠΈΡ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΎΠ½Π° Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ²ΡΠ·Π°Π½Π° Ρ Π»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΡΠΌΠΈ.
ΠΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ Π² ΡΠ΅ΡΠΌΠΈΠ½Π°Ρ ΡΠ½ΡΡΠΎΠΏΠΈΠΈ ΡΠΎΠ½ ΠΠ΅ΠΉΠΌΠ°Π½Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡ Π·Π°ΠΏΡΡΠ°Π½Π½ΡΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ. ΠΠ΄Π½Π° ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΡΠΎΠ³ΠΎ ΠΏΠΎΠ½ΡΡΠΈΡ ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΎΠ± ΠΎΠ±ΡΠ΅ΠΊΡΠ΅, Π½Π°Ρ ΠΎΠ΄ΡΡΠ΅ΠΌΡΡ Π² ΡΠΈΡΡΠΎΠΌ Π·Π°ΠΏΡΡΠ°Π½Π½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ (Ο = Ο2), Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π½ΠΈΠΊΠ°ΠΊΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΈΠ· (3.6) ΡΠ»Π΅Π΄ΡΠ΅Ρ E(Ο) = 0. ΠΠ½ΡΡΠΎΠΏΠΈΡ ΡΠΎΠ½ ΠΠ΅ΠΉΠΌΠ°Π½Π° ΠΈ ΠΊΠ²Π°Π½ΡΠΎΠ²Π°Ρ Π·Π°ΠΏΡΡΠ°Π½Π½ΠΎΡΡΡ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΡΠ»ΠΈΡΠ½Π° ΠΎΡ Π½ΡΠ»Ρ ΡΠΎΠ»ΡΠΊΠΎ Π΄Π»Ρ ΠΏΠΎΠ΄ΡΠΈΡΡΠ΅ΠΌ, ΠΊΠΎΡΠΎΡΡΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡ ΡΠΎ ΡΠ²ΠΎΠΈΠΌ ΠΎΠΊΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ, ΠΈ ΠΏΠΎΡΡΠΎΠΌΡ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π² Π½Π΅ΡΠ΅ΠΏΠ°ΡΠ°Π±Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ.
ΠΠΎΠ²ΠΎΠ»ΡΠ½ΠΎ ΡΠ°ΡΡΠΎ Π΄Π»Ρ ΠΏΡΠΎΡΡΠΎΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΡΡΠΎ ΠΊΠ°ΠΊ ΡΠΈΡΠ»ΠΎ ΠΊΡΠ±ΠΈΡΠΎΠ² Π² ΡΠΈΡΡΠ΅ΠΌΠ΅.
ΠΡΡ ΠΎΠ΄Π½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° Tr(Ο2) ΡΠ΅ΠΉΡΠ°Ρ ΡΠΎΠΆΠ΅ ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π² ΡΠΈΠ·ΠΈΠΊΠ΅ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ, Π½ΠΎ ΡΠΆΠ΅ Π½Π΅ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ΅ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ, Π° ΠΊΠ°ΠΊ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠΈΡΡΠΎΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ (purity), ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, Π½Π°ΡΠΊΠΎΠ»ΡΠΊΠΎ Π±Π»ΠΈΠ·ΠΊΠΎ Π΄Π°Π½Π½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΊ ΡΠΈΡΡΠΎΠΌΡ, Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π³ΠΎ Tr(Ο2) = 1.
3.5. ΠΡΠ±ΠΈΡ ΠΈ ΡΡΠ΅ΡΠ° ΠΠ»ΠΎΡ Π°
ΠΡΠ±ΠΈΡΡ Π² Π½Π°ΡΠ΅ΠΉ ΠΊΠ½ΠΈΠ³Π΅ ΠΎΡΠ²Π΅Π΄Π΅Π½Π° ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²Π°ΠΆΠ½Π°Ρ ΡΠΎΠ»Ρ, ΠΏΠΎΡΡΠΎΠΌΡ Π²Π΅ΡΠ½Π΅ΠΌΡΡ ΠΊ Π½Π΅ΠΌΡ Π΅ΡΠ΅ ΡΠ°Π· β ΡΠ΅ΠΏΠ΅ΡΡ ΡΠΆΠ΅ Ρ ΠΏΡΠΈΠ²Π»Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΌΠ°ΡΡΠΈΡΡ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ Π³Π»ΡΠ±ΠΆΠ΅ ΠΏΠΎΠ½ΡΡΡ, ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΊΡΠ±ΠΈΡ, ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ Π΅Π³ΠΎ ΠΎΠΏΠΈΡΡΠ²Π°Π΅Ρ.
ΠΡΠΎΡΡΡΠ°Π½ΡΡΠ²ΠΎ Π΄Π²ΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ, ΠΊΠΎΠ³Π΄Π° ΡΠΈΡΡΠ΅ΠΌΠ° ΠΌΠΎΠΆΠ΅Ρ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΡΡ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π² Π΄ΡΡΠ³ΠΎΠ΅ (Π΄Π²ΡΡ ΡΡΠΎΠ²Π½Π΅Π²Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ°), ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΠΌ Π³ΠΈΠ»ΡΠ±Π΅ΡΡΠΎΠ²ΡΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²ΠΎΠΌ. ΠΠΎΠ³Π΄Π° ΡΠΈΡΡΠ΅ΠΌΠ° ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ΄Π½ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅, ΠΈ ΠΎΠ½ΠΎ Π½Π΅ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ, ΡΠΎ Π²ΠΎΠΎΠ±ΡΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΡΠΌΡΡΠ»Π° Π³ΠΎΠ²ΠΎΡΠΈΡΡ ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΊ ΡΠ°ΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΈ ΠΎΠ± ΠΎΠΏΠΈΡΠ°Π½ΠΈΠΈ Π΅Π΅ Π² ΡΠ΅ΡΠΌΠΈΠ½Π°Ρ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ.
ΠΡΠ»ΠΈ Π±Π°Π·ΠΈΡΠ½ΡΠ΅ Π²Π΅ΠΊΡΠΎΡΡ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΡΡ ΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠΈΡΡ[93] |0Γ±ΠΈ |1Γ±, ΡΠΎ Π² ΡΠ°ΠΌΠΎΠΌ ΠΎΠ±ΡΠ΅ΠΌ Π²ΠΈΠ΄Π΅ Π²Π΅ΠΊΡΠΎΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄Π²ΡΡ ΡΡΠΎΠ²Π½Π΅Π²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π·Π°ΠΏΠΈΡΠ°Π½ Π² Π²ΠΈΠ΄Π΅:
|Ψñ = a|0ñ + b|1ñ, (3.9)
Π³Π΄Π΅ Π° ΠΈ b β ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π° (Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ), ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΡΡΠΈΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ Π½ΠΎΡΠΌΠΈΡΠΎΠ²ΠΊΠΈ |Π°|2 + |b|2 = 1.
Π’ΠΎΠ³Π΄Π°, ΠΈΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΏΠΎΠ½ΡΡΠΈΠΉ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠΈ, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΡΠ±ΠΈΡΠ° Π·Π²ΡΡΠΈΡ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΏΡΠΎΡΡΠΎ: ΠΊΡΠ±ΠΈΡ βΡΡΠΎ Π²Π΅ΠΊΡΠΎΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄Π²ΡΡ ΡΡΠΎΠ²Π½Π΅Π²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΊΡΠ±ΠΈΡβ ΡΡΠΎ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΉ (ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΠΉ) Π²Π΅ΠΊΡΠΎΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ. ΠΡΠ±ΠΎΠΉ Π²Π΅ΠΊΡΠΎΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΠΊΠ°ΠΊ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ ΡΠ°ΠΊΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ², ΠΏΠΎΡΡΠΎΠΌΡ ΠΊΡΠ±ΠΈΡ β ΠΏΠ΅ΡΠ²ΠΎΠΎΡΠ½ΠΎΠ²Π°, ΠΈΡΡ ΠΎΠ΄Π½ΡΠΉ Β«ΠΊΠΈΡΠΏΠΈΡΠΈΠΊΒ» Π΄Π»Ρ Π²ΡΠ΅Ρ Π΄ΡΡΠ³ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π»ΡΠ±ΠΎΠΉ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ.
ΠΠΎΠ΄ΠΎΠ±Π½ΠΎ ΡΠΎΠΌΡ, ΠΊΠ°ΠΊ Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΡΡΡ Π±ΠΈΡ (0 ΠΈ 1), ΡΠ°ΠΊ Π² ΡΠΈΠ·ΠΈΠΊΠ΅ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΊΡΠ±ΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ Π΅Π΄ΠΈΠ½ΠΈΡΠ° ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ.
ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠ»ΠΎΠΆΠ½ΡΡ Π΄Π»Ρ Π²ΠΎΡΠΏΡΠΈΡΡΠΈΡ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠΈ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ Π½Π°Π³Π»ΡΠ΄Π½ΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ, ΠΊΠΎΠ³Π΄Π° ΠΏΡΠΈΡ ΠΎΠ΄ΠΈΡΡΡ ΠΈΠΌΠ΅ΡΡ Π΄Π΅Π»ΠΎ Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ ΠΈ ΠΌΠ°ΡΡΠΈΡΠ°ΠΌΠΈ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ. ΠΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠΏΠΎΡΡΠ°Π²ΠΈΡΡ Π²Π΅ΠΊΡΠΎΡ Π³ΠΈΠ»ΡΠ±Π΅ΡΡΠΎΠ²Π° ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° Ρ ΠΏΡΠΈΠ²ΡΡΠ½ΡΠΌΠΈ Π΄Π»Ρ Π½Π°Ρ ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΡΠΌΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ? ΠΠ΄ΠΈΠ½ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΡΠΎΡΡΡΡ Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΡ Ρ ΠΎΡΠΎΡΠΎ ΠΈΠ·Π²Π΅ΡΡΠ΅Π½. ΠΡΠΎ ΡΠ°ΠΊ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΠ°Ρ ΡΡΠ΅ΡΠ° ΠΠ»ΠΎΡ Π°. ΠΠΎΠΏΡΡΠ°Π΅ΠΌΡΡ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ, ΡΡΠΎ ΠΎΠ½Π° ΡΠΎΠ±ΠΎΠΉ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ.
Π ΠΏΡΠΎΡΡΠ΅ΠΉΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ Π΄Π»Ρ ΡΠΈΡΡΠ΅ΠΌΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΌΠΎΠΆΠ΅Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡΡ Π² Π΄Π²ΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡΡ (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Β«Π²Π²Π΅ΡΡ Β» ΠΈ Β«Π²Π½ΠΈΠ·Β»), ΠΌΠ°ΡΡΠΈΡΠ° ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠ΅Π΅Ρ ΡΠ°Π·ΠΌΠ΅Ρ 2 Γ 2 ΠΈ Π΄Π»Ρ ΡΠΈΡΡΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ (3.9) ΠΎΠ½Π° ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
. (3.10)
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±ΡΠ΅Π΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΌΠ°ΡΡΠΈΡΡ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΠΊΡΠ±ΠΈΡΠ°, Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π΄Π»Ρ ΡΠΎΠ³ΠΎ ΡΠ»ΡΡΠ°Ρ, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² ΡΠΈΡΡΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ, ΠΊΠ°ΠΊ (3.10), Π½ΠΎ ΠΈ Π΄Π»Ρ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ, ΠΊΠΎΠ³Π΄Π° ΠΊΡΠ±ΠΈΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ ΡΠΎ ΡΠ²ΠΎΠΈΠΌ Π²Π½Π΅ΡΠ½ΠΈΠΌ ΠΎΠΊΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ:
, (3.11)
Π³Π΄Π΅ Π β Π΅Π΄ΠΈΠ½ΠΈΡΠ½Π°Ρ ΠΌΠ°ΡΡΠΈΡΠ°, = (Px, Py, Pz) β Π²Π΅ΠΊΡΠΎΡ ΠΠ»ΠΎΡ Π° (Π²Π΅ΠΊΡΠΎΡ ΠΏΠΎΠ»ΡΡΠΈΠ·Π°ΡΠΈΠΈ), Π° = (Οx, Οy, Οz) β Π²Π΅ΠΊΡΠΎΡ, ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ°ΠΌΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ²Π»ΡΡΡΡΡ ΠΌΠ°ΡΡΠΈΡΡ ΠΠ°ΡΠ»ΠΈ:
. (3.12)
ΠΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ Π²Π΅ΠΊΡΠΎΡΠ° ΠΠ»ΠΎΡ Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ ΠΊΠ°ΠΊ ΡΡΠ΅Π΄Π½ΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΌΠ°ΡΡΠΈΡ ΠΠ°ΡΠ»ΠΈ ΠΏΠΎ ΠΎΠ±ΡΡΠ½ΠΎΠΌΡ ΠΏΡΠ°Π²ΠΈΠ»Ρ (3.8) Pj β‘ <Οj> = Tr(Ο Οj); j = x, y, z.
Π’ΡΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠΎΠ»ΡΡΠΈΠ·Π°ΡΠΈΠΈ Px, Py, Pz, ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ (3.11), ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΌΠ°ΡΡΠΈΡΡ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΠΊΡΠ±ΠΈΡΠ°. Π ΡΠ»ΡΡΠ°Π΅ ΡΠΈΡΡΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠΎΠ»ΡΡΠΈΠ·Π°ΡΠΈΠΈ ΡΠ°Π²Π½Π° 1, ΡΠΎ Π΅ΡΡΡ , ΠΈ ΡΡΠΎΡ Π²Π΅ΠΊΡΠΎΡ ΠΎΠΏΠΈΡΡΠ²Π°Π΅Ρ ΡΡΠ΅ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π΄ΠΈΡΡΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ΅ΡΠΎΠΉ ΠΠ»ΠΎΡ Π° (ΡΠΈΡ. 1). Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ Π²Π΅ΠΊΡΠΎΡΠ° ΠΠ»ΠΎΡ Π° ΡΠ°Π²Π½Ρ:
Px = sinΞΈcosΟ,
Py = sinΞΈsinΟ,
Pz = cosΞΈ,
ΠΈ Π΄Π²Π° Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ° (ΡΠ³Π»Ρ ΞΈ ΠΈ Ο) ΠΎΠ΄Π½ΠΎΠ·Π½Π°ΡΠ½ΠΎ Π·Π°Π΄Π°ΡΡ Π²Π΅ΠΊΡΠΎΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ (ΠΌΠ°ΡΡΠΈΡΡ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ) ΠΊΡΠ±ΠΈΡΠ°.
Π ΡΠ»ΡΡΠ°Π΅ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠΎΠ»ΡΡΠΈΠ·Π°ΡΠΈΠΈ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ ΠΌΠ΅Π½ΡΡΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΡ, ΡΠΎ Π΅ΡΡΡ , ΠΈ ΠΎΠ½ Π±ΡΠ΄Π΅Ρ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ Π²Π½ΡΡΡΠΈ ΡΡΠ΅ΡΡ.
ΠΡΠ°ΠΊ, ΠΌΠ°ΡΡΠΈΡΠ° ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΠΊΡΠ±ΠΈΡΠ° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° ΡΠΎΡΠΊΠΎΠΉ Π² Π½Π°ΡΠ΅ΠΌ ΠΏΡΠΈΠ²ΡΡΠ½ΠΎΠΌ ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅. Π’ΠΎ Π΅ΡΡΡ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΎΠ΄Π½ΠΎΠ·Π½Π°ΡΠ½ΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΠΌΠ°ΡΡΠΈΡΠ΅ΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΠΈ ΡΠΎΡΠΊΠΎΠΉ ΡΠ°ΡΠ° Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π΄ΠΈΡΡΠ°. ΠΠ»Ρ ΡΠΈΡΡΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ (Π·Π°ΠΌΠΊΠ½ΡΡΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ) β ΡΡΠΎ ΡΠΎΡΠΊΠ° ΡΡΠ΅ΡΡ.
Π§ΠΈΡΡΡΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ, ΠΎΠΏΠΈΡΡΠ²Π°Π΅ΠΌΡΠ΅ ΠΎΠ΄Π½ΠΈΠΌ Π²Π΅ΠΊΡΠΎΡΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ ΡΠΎΡΠΊΠ°ΠΌ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ ΡΡΠ΅ΡΡ ΠΠ»ΠΎΡ Π°, Π° ΡΠΌΠ΅ΡΠ°Π½Π½ΡΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ, ΠΎΠΏΠΈΡΡΠ²Π°Π΅ΠΌΡΠ΅ ΠΌΠ°ΡΡΠΈΡΠ΅ΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ, β ΡΠΎΡΠΊΠ°ΠΌ Π²Π½ΡΡΡΠΈ ΡΠ°ΡΠ°. ΠΡΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Ρ ΠΎΠΊΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ (ΠΏΡΠΈ Π΄Π΅ΠΊΠΎΠ³Π΅ΡΠ΅Π½ΡΠΈΠΈ), Π² ΡΠ»ΡΡΠ°Π΅ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ, Π²Π΅ΠΊΡΠΎΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΊΠ°ΠΊ Π±Ρ ΠΏΠΎΠ³ΡΡΠΆΠ°Π΅ΡΡΡ Π²Π½ΡΡΡΡ ΡΡΠ΅ΡΡ ΠΠ»ΠΎΡ Π° ΠΈ Π±ΡΠ΄Π΅Ρ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡ ΡΠΆΠ΅ Π½Π΅ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ, Π°, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ ΡΠ»Π»ΠΈΠΏΡ, ΡΡΠΎ-ΡΠΎ ΠΏΠΎΡ ΠΎΠΆΠ΅Π΅ Π½Π° ΡΠΎΡΠΌΡ ΡΠΉΡΠ°. Π Π² ΡΠ°ΠΌΠΎΠΌ ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΊΡΠ±ΠΈΡΠ° ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΠΌ, Π²Π΅ΡΡ ΡΠ°Ρ, Π²ΡΠ΅ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²ΠΎ Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ, ΡΠΆΠΈΠΌΠ°Π΅ΡΡΡ Π΄ΠΎ ΠΎΡΡΠ΅Π·ΠΊΠ° Π½Π° ΠΎΡΠΈ ΠΊΠ²Π°Π½ΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ 1/2 ΠΈ β1/2. ΠΡΠΎΡ ΠΎΡΡΠ΅Π·ΠΎΠΊ β ΡΠΎΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΠΎΠΆΠ΅Ρ ΠΎΡΡΠ°ΡΡΡΡ ΠΎΡ ΠΊΡΠ±ΠΈΡΠ°, ΡΠΊΠ°ΠΆΠ΅ΠΌ, Π² ΡΠ°ΠΌΠΎΠΌ Ρ ΡΠ΄ΡΠ΅ΠΌ (ΠΈΠ»ΠΈ Π»ΡΡΡΠ΅ΠΌ?) ΡΠ»ΡΡΠ°Π΅.